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Abstract

The communication capacity of a single wideband satellite

channel can be simultaneously shared by a number of users by means of

spread-spectrum multiple-access (SSMA). In phase-coded SSMA the multiple-

"access capability is provided by phase modulating a distinct signature

sequence onto the user's carrier which spreads the user data over a

wide bandwidth. All of the important code parameters for the analysis

of such a system can be derived from the aperiodic correlation functions

of the signature sequences. The asymptotic behavior of such code param-

eters is considered for random binary sequences for which the sequence

length grows very large. New sets of pseudo-random or m-sequences with

optimal aperiodic autocorrelation and cross-correlation properties are

obtained. The relationship between the first few central moments of the

aperiodic correlation functions and the characteristic polynomials

generating the m-sequences is analyzed and the results are compared with

actual sequence data.

Gauss' product of cyclctomic co - -;ad to establish new

analytical results on the periodic correlation properties of Gold sequences

and Kasami sequences yielding subsets of sequences whose correlation

parameters satisfy tighter bounds than previously established for the

entire sequence sets. Numerical data on the relevant correlation parameters

is obtained for a large number of good signature sequences.
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V, CHAPTER I

INTRODUCTION

1.1. Spread-3pectrum multiple-access communication

In recent years there has been a large increase in the number

of satellite communication programs for civilian as well as military

purposes. Pritchard (1977) lists 32 satellite systems currently in use.

A major advantage of a synchronous or geostationary satellite is the

wide coverage area which enables a number of widely dispersed users to

have simnltaneous access to the satellite transporter. The user

channel separation can be achieved in a variety of ways:

1) Frequency-division multiple-access (FDMA) is a cotmmon form of multiple-

access where each ground station has a different, precisely determined

carrier frequency. Siugle-channel-per-carrier as well as multiplexing

to multi-channels -per-carrier is possible and fits well within non-digital

terrestial communication networks.

2) If precise time cooperation between the transmitting stations is possible

one can adopt the very efficient time-division multiple-access (TMMA) in

which each user has the same carrier but operates in a different time

slot. TMM fits better in digitized co=c nication networks.

3) In Code-division multiple-access the channel separation is primarily

due to coding while no precise frequency or timing cooperation between

the transmitting stations is necessary. Application& are, among others,

in tracking and data-relay system (Stampf , et al., 1970), air traffic

control (Stiglitz, 1973) and mi'litary satellite coaunicatiou syste=s

"(Gerhardt, 1973). Spread-spectrum techn'qu.aes characterized by the use
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of a great deal more modulated RF bandwidth than normally would be required

for transmitting the user information. The two most comon forms of

spread-spectrum techniques employed in CDMA are frequency-hopping and direct

sequence modulation (Dixon, 1976). Frequency-hopping was used in the TATS

modulation system and is described in Drouilhet (1969). In direct

sequence modulation the multiple-access capability is provided by a high-

rate code sequence which phase modulates -- together with the data

sequence -- the user's carrier. The receiver station will recover the

information by means -f correlation techniques. The phase-coded spread-

spectrum multiple-access (SSMA) method is very attractive for comemnication

systems which also require protection against malicious interference and

unauthorized listening (Gerhardt, 1973).

The performance of the SSM& system depends on the correlation

properties of the high-speed signature sequences. In the past (Aeim, 1965),

(Blasbalg, 1965) most of the attention was focused on the periodic

correlation properties of the signature sequences because in most cases

a synchronous comunuication model was assumed. In the next section we

introduce an asynchronous SSMA system model -- earlier presented by

Pursaley (1974) -- uhich rakes it possible to identify the correlation param-

eters of interest for the co~unication performance as well as for the

synchronizat ion performance.

1.2. fhase-coded SMA system =odel

We will comsider the SS4A system model as given in Figure 1 for

K transmitting stations or users. The i-th user's daca signal bift) is a

j ."sequence of positive and negative pulses of duration T and unit amplitude,
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b.bi t PT(t-T)

where biL E(+I, -l3 denotes the i-th user's information bit stream and

pulse p (t) - I for 0 5 t < r and pT(t) = 0, otherwise. The code wave

form which binary phase modulates the user's RF carrier frequency can be

expressed as

ai.) uj ZT (t-JTc) (1.2)

where tu (iu 3 represents the discrete signature sequence of the i-th user,

and has period p = T/Tc and elements of [+ l,-1).

For an asynchronous system where no timing reference for the K

users is assumed, the received signal at the message destination can be

expressed us

K
r(t) = Z (2P) a (t-T.)b (t-ri)cos(Wt++i) + n(t) . (1.3)

i=l

Here n(t) repr.isents the channel noise which we assume to be a white

Gaussian process with two-sided spectral density N0/2, Wc represents

,he common RF canter frequeucy and P the common signal power. Unequal

signal powers can easily be incorpotated in the results. If the received

"signal r(t) is the input to a synchronized correlation receiver matched

to the i-th user signal, the outlut at sample moment t - T is given by

Pt•rsley (1974) as

I K T
Zi(T) (P) 0 T + Z + S n(t)a (t)cos w t dt

* ,~~ k-1 0 (1.4)
kOi
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where S ( -with (u - (u and [ t, eul
i,k k -j t~' n vJ~ () -eul

for 2k To S 'k < (1k+l)Tc

( bko (Lk)Tc + [a(,I k+(I "uv(•k)](Tkt1kTc))cos Ck

if b zb
Sik¶k)kO k-i1}ii'. Sli,k (k) •

b [9 (1 )T + [8 ( )-~ (A)@~kTioyk,O u,v k c uv k+1 - U(Vk -k k) ]cos.;k

if b 0 b (1.5)

The discrete cross-correlation functions e (1) and u (1) for theL1V UV

sequences u fu9 and v - [vj] are defined as

~ 2 C (A-p) +0C (t) 5O L ! p-u,v 'u,v uv

(1.6)
u() C (I-p) - C (uv) , 0 L p-I

iuv u~v

"where CuV (4) denotes the aperindic cross-correlation function defined as

uU'v

• ~p-Il-

E U -P5ykJ-0O -,tvj+ O • p-
SCu~ (A) - p-l+2

0 ILI a p (1.7)

Observe that C (4) C (-4), thus the periodic (or even)U1,v V'U

cross-correlation function 9 (2) satisfies 9 (4) 9 (p--) where

as function u (2) satisfies Mv(2) - vu(p-i) -- hence, Hassey and
uI'v U'v V'u

TUhrau (1974) called the latter the odd cross-correlation function.

" I
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In order for the correlation receiver to operate properly it

should be synchronized with the i-th user's signal. The synchronization

decisions are derived from Z (T) in (1.4) which will contain the periodic

t" ', autocorrelation function eu(A) = uu(1) or the odd autocorrelation function
U UuU

8u(A) = uu(A) as long as tbe receiver is not yet synchronized or has lost.

synchronization. The autocorrelation functions will also appear in Zi(T)

when m•iltipath interference Is present in the rhannel (Massey and Uhran, 1969).

1.3. Worst-case performance

The function Sik(k) in equation (1.4) achieves a maximum value

with respect to rk and ck whenever rk AkTC,, for some integer Ik) and

The resulting values of Si,k(ik) are + Puv(I-k) or -+ Eu~v(ek). Hance the

maximum value of the error probability PrfZi(T) > 0/b - 1) will be

minimized by selecting a set of signature sequences for which the peak

parameters

9 (U,V) max(ju (1) 1 0 A 1 p- (1.8)
max u'v

and

9a(u'v) ~max(IO (1)f1 0• :5 • p-l1) (1.9)

are small. The same result is obtained for bi, + 1.

Not only 0 (u,v) itself but also the number of times Is (ti

takes on this maximum value -- when A L 0,1,..., p-I -- is of interest.

Let dIXII denote the cardinality of X, then we define

Lc = II(A : u()I 8 (I,v)J ; 0 L-. p-li• (1.10)

Urv oax (1.10)

Furthe~more one defines for a set S of sequences,
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maxfe (uv) : u ES , v ES) . (1.11)

The parameters Lc and G are defined as in (1.10) and (1.11) respectively

with G replaced by §.

Pursley (1976a) pointed out that the worst-case probability of

detection error P can be written as
max

S=1-P -(Ap•2bN (1.12)

where I is the standard Gaussian cumulative distribution function, e' PT

the energy per dota bit and A • max[(O, a3-

For the autocorrelation functions we define the parameters

eG_•ju) m axfleu(L)! .1 S <t S p -l (1.13)

II

La 11[t Ieu() ma(u) ;1•5~ L p-l3 (114

ankd ea may a (u) U EES) (1.15)

A A PA

he parameters 0 (t,), La and 9 are defined as in (1.13), (1.14) and
"max a

(1.15) respec.tl,,ly, with 0 reple-ed by e. In addition we define

Cuax(U) maxr Cu('t)I : 1 p A-i P-1) (1.16)

and

C (u'v) m&x(IC (~I l-p~ L Sp-i) (1.17)mall u'v

1.4. Average performance

The average probability of e*ror as well as the average signal-

to-noise radio at the receiver output are important measures of the
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average system performance given a set of signature sequences. The former

is hard to compute but Yao (1976) obtained upper and lower bounds on its

value. The evaluation of those bounds requires extensive knowledge of

the aperiodic cross-correlation functions.

Assume the phase shifts k' time delays Tk and the data symbols

bk, and bk I 1 k K, k # i to be mutually independent random

variables. Also assume that ck and rk are uniformly distributed over

[0,2'?] and (0,T] respectively and the data symbols bk, take on values

+ 1 or -1 with equal probability for k # i. By obtaining the mathematical

expectation and the variance of Zi(T), Pursley (1974) showed that the

average (power) signal-to-noise ratio at the i-th user receiver output in

an asynchronous SSMA system can be expressed as

+Qal (1. 18)
b

where the asynchronous interference Qa equals

K
Q (6p 3 ) 1  r(u(i)'u (1.19)

k•l
k~~i

with the interference parameter r(uv) defined as

p-1
r(u,v) E (2C (L) + Cu(t)cu(t+l)] (1.20)Lml-p ,uv uv

Yao showed that Pe - 1 - §/i-i) is a very good approximation of the

actual average error probability for many practical values of p and K.

Clearly, detailed knowledge of r(u,v) for prospective sets of signatures

is important in the performance analysis. In some cases the product
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C (A)C (1+1) does not contribute to r(u,v) as is shown in Appendix A
U'v u'v

for Barker sequences (Barker, 1953) of odd length p.

Important measures on the autocorrelation functions are

M(u) L 8 (A) (.1
AiU

and

(u) 2u(A) (1.22)
u

which can be used -- in addition to the worst-case performance measures --

as sieves for sequences with good synchronization capabilities. Observe

that

M(u) + M(u) - 4S(u) (1.23)

where

p-1
2

S(u) C C (A) (1.24)
A=l U

Parameter S(u) is called the sidelobe energy of a sequence and was

previously considered by, among ot'iers, Lindner (1975) and Golay (1977).

1.5. Outline of the study

Chapter 2 investigates the various sequence parameters described

above, for random binary sequences for which sequence length p grows very

large. An approximation of SNR is obtained which is very accurate for
a

typical values of K, p and eb/NO.

Chapter 3 discusses the code parameters for maximum-length

sequences generated by primitive polynomials. New sets of sequences with

optimal autocorrelation as well as cross-correlation properties are obtained.
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Chapter 4 investigates the relationship between the aperiodic

correlation functions of maximum-length sequences and the primitive

polynomials which generate those sequences. in particular, the third

central moments of the odd correlation functions are obtained and compared

with actual sequence data.

Chapter 5 investigates sets of sequences generated by products

of primitive polynomials such as Gold sequences (Gold, 1967) and

Kasami sequences (Kasami, 1966). A method -- based on Gauss' products of

cyclotomic cosets -- is given which yields large subsets of sequences

with better correlation properties. The relevant correlation parameters

of A large number of good subsets are obtained.

!-



CHAPTER Z

CORRELATION PARAMETERS OF RANDOM BINARY SEQUENCES

This chapter considers the asymptotic behavior of the various code

parameters described in Chapter 1, for random binary sequences.

2.1. Aperiodic correlation parameters

In a practical realization of a SSM& system, the signature

sequence length p is constrained for obvious technical reasons. Notwith-

standing this fact, it is still of interest to study the asymptotic behavior

of random binary sequences for which the sequence length p grows very large.

By random binary sequences we mean binary sequences of independent identi-

cally distributed random variables u for which Prf- =+I) Prtuj=-l .

Let 0 1:5 p-l. Then, C (L) O uvj+. Suppose In• p.e.
U'v J= +

In order that C (L() r, it must be that uj a v 1+ for exactly ½(p-Aft)

integer values of j in the range 0 : J < p-l-'. Hence, if p-A+r is even,

there are

I p-4

b(t,p,r) -•(P-4+r))

choices for (u 0 ,ul,...,u 1 •). Since there are 2P choices for v and 2

choices for (Up,...,Up), there are a total of

h(t,pr) 2= 2 b(l,p,r) (2.1)

sequence pairs (u,v) for which C (t) - r, provided p-t+r is even. In
Utv

the special case that uinv, there are
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ii~ A'Lpr b(t,p,r), 1 :9 L e. p-1

I sequence pairs (u,u), i.e., sequences u, for which Cu () r, 1 # 0.

Notice also that h(0,p,p) - 2P.

Recall that

C mx u) max [IC u(1)l1: 1 1 p-1)

Li and

max max max

where

C m(u,v) max[ [lCuv(A)1: 0 :5 A p-l).

Moon and Moser (1968) showed that for e > 0,

log C (u)max - 22
I log p (2.2)

for almost none of the binary sequences of length p, i.e., for only a fraction

y(p) of the sequences, where Aim y(p) 0 0. Or, alternatively,
p..Ilog C ma(u) '

Pr 1 Z C c (P) (2.3)

for u chosen at random from the set of all possible sequences. In Appendix

B we show, analogous to the proof of (2.2) by Moon and Moser, that if u and

v are drawn at random from the set of all 22p sequence pairs, then

seuneparte
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flog C (u'v) ' 24

Pr( (p (2.4)

where lim y (p) " 0.
p CO

2,2. Bounds on the set size of 'good' sequence pairs

A consequence of the expressions (2.3) and (2.4) is thd following.

Fix e 1 I. The set of all 22p sequence pairs is purged of all pairs for which

k the event in (2.4) occurs. This gives a set AI(p) which has cardinality

11A (p)II. The expected value of IIA (p)II is lower-bounded by

EIIA (p)Il 2 (1 -

Hence, there exists at least one set, say A2 (P), with

11A2 (p)I1 Z 2 2P(1 . y(p))

Notice that A2 (p) does not contain any sequence pair of the form (u,u)

because C (uu) - p. This problem is easily resolved, however, because
max

expression (2.3) implies that there exists at least one set, say B2 (p) with

J IB2pi 2P(l - (p)).

The union of A (p) and B2 (p) yields a set of sequence pairs with cardinality
22

lower-bounded by

1A2 (p U (p)Il 2: 2~( -y(p) + 2P( y(p))) (2.5)

S-- ----- - ------------
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for which C (u) as well as C (u,v) are contained within the range

max max

[p½(l-e), p•(lde)]. Furthermore, I1A2 (p) U B2(p)II grows exponentially with p

as 2 because A2(p), which is the compliment of A2 (p), and h,.ice~~~ 2(P)P u ()I
11 A(p) U B )11', contains only a vanishingly small fractioa of pairs, i.e.,

-2pjjA( : y(p) and lim y(p) 0 0. Above result shows that there exists at
2 2~A(P)I ~YI )an

lemst one very large set of sequence pairs (u,v) for which

!5 Cmax(u) p , e > 0, u v (2.6)

and

p C (uV) : p C > 0, u v . (2.7)
max

2p,
The size of this set grows exponentially with p as 2

Discussion

The growth of the size of at least one set of sequences u, as subset

of A2 (p) U B2 (P), for which then (2.6) and (2.7) will hold simultaneously,

remains an unsolved problem. Schneider and Orr (1975) consider the cardinality

of a qet A(p) obtained by purging the set of all 2P sequences, of all sequences

which violate the upperbound of (2.6) and which form pairs which in turn

violate the upperbound of (2.7). Their use of the upperbound only, is here of

minor importance. The purging method itself, however, has a disastrous effect

on the lowerbound of the expected value of LJA(p)lI. Suppose, for example, that
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a certain sequence u will form, with many other sequences v, sequence pairs

(u,v) which violate the (upper) bound in (2.7). Schneider and Orr -- see their

equation (20) -o not only remove sequence u but all the other sequences v as

well, from the set of 2P sequences. As a result, t'he lower bound of the

expected value of ILA(p)ll #iil not grow exponentially with p.

2.3. Asynchronous interference parameters

Let u and v be two random binary sequezces (not necessarily distinct).

With JIl S. p-l and Inl p - Il, equation (2.1) implies

PrtCu'v() r ) (2.8)

2

This probability mass function implies a moment generating function

* M S(t) - Efexp[tCu(L)]

11 Et exp[ tu vj.,] 0 f •p-1

i J-0

{nlE(exp( tu vil 1-,< 0
j -0 1 v

p-I tI
SII 4(exp(t) + exp(-t))

J-0

(cosht)P'ILI * (2.9)

Hence the first four moments of C M() are
u'v
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Etc C L) a ~ (P-11I)(cos ht)PI11- sin hti 0,
Q'v at 0 It.O

2
2 2( p11 -
E[C- (1) no 2 )(ros ht)'' sin~ht

+(p-ILI)(cos ht)P I~ csh 1  -pIl.(2.10)

Jr. a si.mila~r mwn~r,
3

3 a M(t)
Etc UV(L,)] at 3 'tO-0 0

and4

E( 4aM c(t) (P- +I (P1L1'\ +

3(p- ILI) - 2(p-jtj) .(2.11)

Furthermore, for I m,

E( C (L)C (+IL0 9 10 n aftv v 1 0
U'V Uv j-0 n-O +Ln

in fact, it is easy to showi that

E(C WLC km)) -0 .V ~m, L~
u'v U'v

and

3Etc MLC (m)) 0 v Ly M, L M
u'v uIv
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while

2 2
EfC u,,WL)C, )] " (p-ILi)(p-IMI) V M,V m, £ m.

Above results enable us to calculate the mathematical expectation and

the variance of the asynchronous interference Qa as defined in (1.19).

First we obtain the first and second moment of the interference parameter

r(uv).

P1 2
E~r(u,v)] E E(2C (1) + C (L)C (]4+1)1

p-l

E 2(p-ItI)

-2p2  (2.12)

and
2 1 l, 22 ()2 -

Efr (u,v), - r 2C 2()] + + Z E C M(C (t+l)2
UV u,v u*v

p-1 2 p-1
+EK2 E 2C U(L) E C (M)C _(M+1)] . (2.13).•'-p *- e•"-pu,v u~v

,NOW
op~i 2 2P-I P- p- 1 -

E : 2 w) 4Z( C2  (L) + 4- 1: Ir C M~C (M))

Lml~p Linl~p iI- l-

a 4 1 3qtj2 - 2(p-11j)j
- p-I '

+g • (P-ll) -4 • (p-ltLI
LtIn"-p - £uI-p

W4p4 + p3 8p2 8 (2.14)
-4 3 P.T 3
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L and

L2 2 2
Ef C~ (f2)C U,(2+1)3- Ef E c ' (z)C~, U,(2+1)3

p-1

1-1-p

L 2 3 2 (.5

whlile
p-1 2-

E[2 Z 2C (2) E C (r)C (rn+1)3 0. (2.16)
2- '.L,V U,V

Hence, substituting (2.14), (2.15), and (2.16) into (2.13) gives

Efr 2(ix,v)3 - 4p 4+ 6p 3 8p 2+ 2p .(2.17)

In a stra'ghtforward manner one obtains with (2.12)

EQ a (6p E( r(u ~ )u)
3k-1

-1
-(3p) (K-1) (2.18)

while
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2 2var(Qa) - E(Q ) - E Qa a a

- (36p 6)'(K-l) var(r(u,v))

" " I..-.

thus

"var(Qa) (36p )' (K-l)(6p - 8p2 + 2 p)

and therefore

3 -1
var(Q " (6pa / (K-1) (2.19)

for large sequence length p.

2.4. Asynchronous interference versus synchronous interference

A system is considered to be synchronous when the relative shift T

between the signature sequences equals zero. The RF-phases of the signal

carriers, however, are still assumed to be independent random variables,

uniformly distributed over the range [0,2n]. The signal-to-noise ratio

at the output of a correlation receiver, synchronized (frame and bit) with

itns own signature sequence equals

SNR - + Q (2.20)
b S

where the synchronous interference Qs equals
K

Q (2p) E r(u )u)) (2.21)

2•here rs(UV) * C (0). Wolf and Elepas (1965) derived EQ andl var(Q )
whe v
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for random binary sequences,

EQs " (2p)"(K-I) (2.22)

and

var(Q) (2p) (K-i (2.23)

Of course, in a practical synchronous system, one may want to consider an

orthogonal set of signature sequences for which C (0) - 0, as long as the

synchronization requirements can be met. From (2.18) and (2.22) we have

the well-known result, reported by Harris (1973),

2EQa 2 EQs. (2.24)

In addition, however, we have now also

-1i 4 -1 1 -2

var(Qa) (3p) El - p +s p2 ]var(Q)

or

var(Qa) a (3 p) var(Qs) (2.25)
a s

for large sequence length p.

Let the asynchronous fluctuation ratio Ra be defined by

! I i• Ra -1�0 log1 O{[EQ -va(q)]'lEqa +(Q/ AQ)]. (2.26)

,. The synchronous fluctuation ratio R is defined as in (2.26) with Q

replaced by Qs" Substitution of EQa and var(Qa) into (2.26) gives

Ia
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"R -10 log10 [K-l-3(K-l) (6p) 4 J 1 [K-1+3(K-l)k(6p)'J] (2.27)
a

while a similar substitution with EQs and var(Qs) givesS! S
"" 1Rs-0 log1 0f[K-I-(2(K-l))•]'[K-l+(2(K-l))•} (2.28)

Expressions (2.27) and (2.28) indicate a rather small value of R if
"a

compared with R . Furthermore, Rs does not depend on the sequence length p

but R decreases steadily when p increases. The graph in Figure 2 gives
a

R and R as functions of K for a number of sequence length p - 2 n1. For
s a

example, with K a 8 and p - 127, R -0.36dB while R 5.ldB° It should

be noted that a fluctuation of Qa does not produce the same fluctuation in

SNRa. For example, with 10 logl0(eb/NO) -10 dB, a +/v (Qa) fluctuation

of EQa results in an (approximately) +0.05dB fluctuation of SNa while a

+fr(Q) fluctuation of EQs results in an (approximately) + 0.85 dB

fluctuation of SNR s

Thus, in the analysis and preliminary design of an asynchronous SSMA

system, the approximation

N
SNR + (2.29)

is very accurate for typical values of K, p and Pb/N0.
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System Users, K

Figure 2. Asynchronous and synchronous fluctuation ratios R. and Rs
versus the number of system users K, for random binary
sequences of length p -63 through p 4095.
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CHAPTER 3

CORRELATION PARAMTERS OF M-SEQUENCES

In a practical spread spectrum multiple access system, the signa-

ture sequences will not be selected at random from the set of all possible

sequences of a certain length p. The sequences must possess certain

qualities, otherwise the SSMA system will not function properly. A

large class of sequence with a number of interesting properties are the

, ",maximum-length shift register sequences or m-sequences. They have been

studied extensively in the literature by Zierler (1959) and Golomb (1967)

and others.

3.1. Introduction to m-sequences

It is convenient to distinguish in our notation between sequence

elements uj E f-1,13 and sequence elements P. E (1,0) which are related by

u- (- ) (3.1)

A binary m-sequence p of period p - 2n-1, is a sequence which jatisfies a

recurrence relation of the form

n
;•;•~~~~J-+ " =l i •J+n-il -,,. 32

where

f(x) -fx + f x + + f + f
0 1 n-l' n

is a primitive polynomial of degree n over GF(2), the binary alphabet

[0,1) with addition modulo 2. A polynomial of degree n is primitive if it
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divides xM- 1 for m - 2- 1 but not for any m < 2- 1. The roots of a

primitive polynomial of degree n are primitive elements of the extenasion

nn
field GF(2n), i.e., they have order 2n 1, and every nonzero element of

GF(....can be written as a power of some primitive element 1. We denote

the minimal polynomial which has as a root by f (x). Peterson and Weldon
q

(1972) give extensive tables of primitive polynomials up to degree 34.

Polynomial f(x) represents an n-stage linear feedback shift

register where 1 and for 0 < i < n, fi 1 if there is a feedback

th
"tap connected to the i stage of the register and fi 0 if not. An example

4
of a shift register represented by f(x) x + x + I is given in Figure 3.

j /-i+3 • /J-i+2 > j+j kLj Output
S• 

./.~L2 ,/.4 1.,. 0

fo f3 f-,-f4f

~~ý LL.T 
a-••

h'j+4

4

Figure 3. Shift register for f(x) x + x + I ; p - 15.

Let Ti denote the left cyclic shift of sequence u, i.e.,

Sp T Ol, ..... ,•l ' 2 .....

- ) 

--
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Of course, Ta is equivalent with Tu. Notice that equation (3.2) implies

Tn% + fl Tnl .+ ...... + fn- T• + Pi 0 (3.3)

where 0 denotes the all-zero sequence.

Let tr(x) denote the trace of x, defined by

2 2 n-I
tr(x) x +x + ...... + n (3.4)

Then for each nonzero element • in GF(2n), there exists a solution a of

the recurrence relation (3.2) specified by

= tr(*)• (3.5)

A proof can be found in Lint (1973). The various solutions P, P # 0,

of (3.2) are simply shifted versions of each other; i.e., the sequences

2 P-l
a, T,--T2u .T... ,TP • are in the same equivalence class with respect to

shift operator T; P is called the cycle representative. The m-sequence

corresponding to * 1 satisfies the important property

P- uj (3.6)

and is said to be in its natural orientation or characteristic form.

Henceforth P (or u) denotes the m-sequence in its natural orientation.

k kFurthermore, T ii corresponds with ' . For each degree n, up to n a 168,

Willett (1976) has computed the characteristic form of one m-sequence.

Let V be any other m-sequence of the same length as ii. Suppose

u satisfies a recurrence relation specified by f (x) and let v be in its

natural orientation, then
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-U •J ,V . (3.7)

S qj i

Equation (3.7) implies that the characteristic m-sequence v can readily

be determined from the characteristic m-sequence u. Table I gives all

characteristic m-sequences up to and including length p = 255. The

primitive polynomials f(x) are denoted in the usual octal notation, for

example

4 5 4 3 2f(x) x + x + O.x + l.x + O.x + O.x + 1.x + 1

"M- [0 0 0 1 1 0] - 2 3

The initial start position or loading of the shift register is also denoted

in octal notation

1 = O PI. ...... ) (0,0,0,1,0,0. ...... ) 0 4 6 5

Of course the last two digits of 0465 are here redundant. Henceforth, all

loading of shift registers will be given in octal notation except when

indicated otherwise, by means of an asterisk, e.g., as in Table 4.

3.2. The trinomial structure of m-sequences

Another important property of m-sequence i is the so called

shift - and - add property, i.e.,

j~r +.~ ' j(3.8)

for some r and 1 0 0. In terms of the corresponding m-sequence u over

f+1, -1], equation (3.8) becomes uj u for some r and A. #0,J! JI
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Table 1. Characteristic m-sequences of length p 15, 31, 63, 127 and 255.

Poly. Loading Poly. Loading

p 15 023 0465 031 3654

p s 31 045 4547 051 4127
075 7670 057 4460
067 7211 073 7316

p 63 103 0103 141 3752
147 3753 163 3210
155 3313 133 0441

p 127 211 4021 221 4464
217 4126 361 7756
235 4543 271 4566
367 7671 357 7313
277 4441 375 7757
325 7337 253 4024
203 4020 301 7752
313 7655 323 7230
345 7214 247 4103

p 255 435 0107 561 0543
551 0445 455 0543
747 3773 717 3234

453 0566 651 3316
545 3216 515 1455
543 0546 615 3670
703 3317 607 3772
765 3650 537 0106

-----'- -- -
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which will be used extensively in Chapter 4. Equation (3.8) can also

be expressed in terms of the cyclic shift operator T,

Tr(1)64 + Tý + P 0 (3.9)

Recall that m-sequence P already satisfies a recurrence relation as in

(3.2), specified by a minimal polynomial f(x). Hence (3.9) specifies

for each A # 0 a binary trinomial of the form

xr(L) + x• + 1 (3.10)

which should be divisible by f(x).

Let Ix denote the cyclotomic coset of integers x' mod px

conitaining x as smallest element, i.e.,

Ix (x' x' 2= x mod p, x!S x' ; j 0,1, .... I • (3.11)

In some cases f will be denoted as (x] or x if so indicated. Thex

cyclotomic casets of integers modulo p, up to p 255 are tabulated in

Table 2. On each horizontal line a coset and its reciprocal are grouped

together, whenevei such a reciprocal exists.

The trinomia's in (3.10) have algebraic properties which consider-

ably reduce the effort of 'inding r(L) for each value of L. Most important

is the property that whenever L E I xand 'E I than r(x) E I and
x y

r(2')ET y, for some x and y. For example, this can be observed from Table 3

where the trinomials xr(t) + x" + I, divisible by f(x) x + x + 1, are

tabulated. A more detailed discussion on trinomials can be found in

Lindholm (1968). In Chapter 4 and 5 we will use the trinomial structure of

the m-sequences extensively.
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Table 2. Cyclotomic cosets of integers mod p 15, 31, 63, 127 and 255.

p p= 15 0
1 2 4 8 7 14 13 11

* 3 6 12 9
j~ 510

p= 31 0
1 2 4 8 16 15 30 29 27 23
3 6 12 24 17 7 14 28 25 19
5 10 20 9 18 11 22 13 26 21

p =63 0
1 2 4 3 16 32 31 62 61 59 55 47

3 6 12 24 48 33 15 30 60 57 51 39
"5 10 20 40 17 34 23 46 29 58 53 43

i7 14 28 56 49 35
9 18 36 27 54 45

11 22 44 25 50 37 13 26 52 41 19 38
21 42

p 127 0
1 2 4 8 16 32 64 63 126 125 123 119 111 95
3 6 12 24 48 96 65 31 62 124 121 115 103 79
"5 10 204 0 80 33 66 47 94 61 122 117 107 87
7 14 28 56 112 97 67 15 30 60 120 113 99 71
9 18 36 72 17 34 68 55 110 93 59 118 109 91

11 22 44 88 49 98 69 29 58 116 105 83 39 78
13 26 52 104 81 35 70 23 46 92 57 114 101 75
19 38 76 25 50 100 73 27 54 108 89 51 102 77
214 2 84 41 82 37 74 43 864 5 90 53 106 85

p 255 0
1 2 4 8 16 32 64 128 127 254 253 251 247 239 223 191
3 6 12 24 48 96 192 129 63 126 252 '-49 243 i31 207 159
5 10 20 4u 80 160 65 130 95 190 125 250 245 235 215 175

7 14 28 56 112 224 193 131 31 62 124 248 241 227 199 143
9 18 36 72 144 33 66 132 111 222 189 123 246 237 219 183

11 22 44 88 176 97 194 133 61 122 244 233 211 167 79 158

13 26 52 104 208 161 67 134 47 94 188 121 242 229 203 151
15 30 60 120 240 225 195 135
17 34 68 136 119 238 221 187
19 38 76 152 49 98 196 137 59 118 236 217 179 103 206 157
21 42 84 168 81 162 69 138 87 174 93 186 117 234 213 171
23 46 92 184 113 226 197 139 29 58 116 232 209 163 71 142

25 50 100 200 145 35 70 140 55 110 220 185 115 230 205 155
27 54 108 216 177 99 198 141 39 78 156 57 114 228 201 147

37 "4 148 41 82 164 73 146 91 182 109 218 181 107 214 173
43 86 172 89 178 101 202 149 53 106 212 169 83 166 77 154

45 90 180 105 210 165 75 150
51 102 204 153
85 170

• , ... . . •. • , . . . ,% - . . .I,
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Table 3. Trinomials +r x + 1 divisible by f(x) ... 4 + x + 1

4 13 6 12 11
+x+l X +x +1 x +x +1

8 2 9 7 11 x12
x + x+X+ x + + x +2 +1

14 3 2 8 6 13
x +X + x + x+I x +x +1

4 7 9 3 14
x+x +1 x +2x +I x+ + I

10 5 5 10
x +x +1 X +X +I

3.3. Autocorrelation functions

The autocorrelation function of a signature sequence plays a key

role in obtaining word synchronization in the correlation receiver and

in reducing the effects of multipath interference. The periodic auto-

correlation function 8O(') - 1 for all r # 0 mod p for m-sequences is

nearly ideal in this respect and one of the main advantages of m-sequences.

Of course ease of generation is another advantage.

While thus a (Tku) - 1, Yk for m-sequences, the companion param-
max

eter 0 max(Tku) defined in (1.13) is very sensitive to the selected cyclic

shift Tk of u. To find cyclic shifts for which mx (T ku) is minimal,

"a computer search is required. In the process of searching the best T,

a number of ties may occur (i.e., a number of different values of k in

T result in the sawe minimal (T u)). Hence, a second condition is

applied to the already selected values of k reducing the number of ties

considerably. The second condition is stated in the following definition

which is due to Uassey and Uhran (1%69).
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I!~

Definition 1. An m-sequence u' u is auto-optimal (AO) with respect

to mx(Tku) when the following conditions are satisfied in successive
max

order:

a)0 (u,)•! (Tku) Vk
max max

b) The cardinality La of the set

btuj ,(J)j * em (ui'); 0~ <~ 5p- I

is smallest for sequence u'.

Observation: It follows immediately from this definition that an auto-

optimal m-sequence generated by primitive polynomial f(x) of degree n has

a reciprocal -- generated by f'(x) xnf(l/x) -- which is AO too.

Table 4 specifies for each primitive polynomial of degree n 7,

the loading or start position '0i .... 'I6 of the shift register such

that the generated m-sequence is AO. There are two distinct cyclic shifts

of the m-sequence generated by f(x) x7 + x + 1 (203), both which are AO.

They are indicated as 203a and 203b. Then, the reciprocal polynomiul

f(x) - x7 + x6 + 1 (301) will generate two distinzt AO m-sequences too.

The resulting values of 0 (u) and La for u' are as indicated.

Clearly, there is not one unique set of eighteen ,uto-optimal

M-sequences of length p 127 as was reportad by Massey and Uhrau (1969).

Table 4 shows that a total of four distinct sets of eighteen =-sequences

each can be selected by choosing two a-sequences, %&ich are not cyclic

shifts of each other, from the set (203a, 203b, 301a, 301b). Furthertore,

the auto-optimal m-sequences of )Ussey and Uhran do not seem to be

reciprocal pairs.



32

Table 4. Auto-optimal m-sequences of length p 127.

Poly. Loading* Poly. Loading* a (u) La S(u)
male

211 0010000 221 1001101 17 6 2183
217 0000101 361 1111111 15 12 2015
235 00C1100 271 1000101 17 10 2283
247 0010111 345 0110001 17 8 2255
277 1110001 375 0101010 19 4 2295
357 1110010 367 0110101 17 4 2563
323 1110111 313 1000111 17 4 2203
203a 1101101 301a 0010010 17 4 2087
203b 0000001 301b 1111111 17 4 2403
325 0000101 253 1101100 19 6 2483

The sidelobe energy paramezer S(u), as defined in (1.24) can also

be used as a sieve for m-sequences. In particular, we might use S(u) to

further distinguish between AO m-sequences, because for m-sequences,

M(u) = E e U(O 4 S(u) - p + 1 (3.12)

one of the important parameters in the direct sequence SSMA system.

Hence, it is convenient to extend the definition of auto-optimality

further by including S(u) as a next sieve.

Definition 2. An m-sequence U = Tk u is indicated as AO/LSE whenever U

is auto-cptimal and has lowest sidelobe energy S(U) among all auto-optimal

shifts of u.

When the m-sequences generated by polynomials 203b and 301b are

* deleted fr'om Table 4, the table will give the AO/LSE m-sequences of length

p 127.

'g_-
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3.4. Periodic cross-correlation of m-sequences; Golomb's theorem

Let u and v be characteristic m-sequences generated by the

primitive polynomials fl(x) and f (x) respectively. Both m-sequences

are constant over cyclotomic cosets, i.e.,

Uj u =x(T£) for j ETLi (3.13)j. = 2j Y

and v 1 = v2j x(Tqi) far j Elqi (3.14)

where
•tr (pqi)

x(rqi) = (-) r• (3.15)

The periodic cross-correlation 0 (uv) is also constant over cyclocomic

cosets, i.e.,

U, (T,') 0 UV(2T,') T r,(1)' ,'E I T (3.16)

Gold and Kopitzke (1965) have computed the periodic cross-correlation

0 (-) for m-sequences of length p 5 8191. The same data can be obtained

by means of an ilegant theorem of Golomb (1968), which is derived as follows.

The Gauss' product of cy.lotomic cosets T and T is defined as

1~ (s~t) mod p s Ef1 ,tEll) (3.17)

Hence, one can write the following equality

S.I~~~~~tross+t)=(Ir()

F.se% t Ell rEll ny xy

Let xI 11 denote the cardinality of cyclotomic coset Ix. Then, from the
x x

definition of 9 (-r), equations (3.15), (3.16) and (3.18), one obtains
U'v

Golomb' s

...
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Theorem 1: 0 1- Xu 0 •I (3.19)

II H

I (.l~Xr((I

where Xu ( y11y) (3.20)S~rElx y
i! Y

and the sum in (3.19) is over all the integers i which represent distinct

cyclotomic cosets ¶1 Expression (3.19) represents a multiplication of a

vector

!(X(1 ))i (3.21)

of 'coset assignments' to m-sequence v, and the normalized matrix

X = [-X (1]xly)] (3.22)
- lU u x y

In order to obtain X for some m-sequence u of period p one
--U

needs the array of Gauss' cyclotomic coset products [(Ix I. Golomb (1963)
xy

specified [Tx ¶y for p 15 -- here reproduced in Table 5 -- and p = 31;
X y

we present [I I for p 63 in Table 6, where I is indicated by (x].
X y x

An example of Golomb's theorem

Let u and v be m-sequences of length p 15 generated by the

4 4 3
polynomials fl(x) W x + x + 1 (023) and f.,(x) x + x + 1 respectively.

The cyclotomic cosets are ¶0 [0h, 71, [1,2,4,8), ¶13 [3,6,12,9),

¶15 - [5,101 and 1I - [7,14,13,11). The vectors of coset assignments to

m-sequences u and V are

4..4.- *" (×(4)4X(Yl' X(.3)' X(1!5)' -X(-7))

A I ,-,i 1
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'Table 5. Gauss' products of cyclotomic cosets; p = 15

7o 0no i '3 f 5  'I7

4. - 0 0135 7

""1l1 +2' +215 i +21 +27 3 +7 0 +1 +3 +71 1 3 5' 1 7 3 '+n7 0 1+ 3'+'7

S'I]3 "]3 '+2" 5 +2T 7  4'1 +3113 'nl+17 2 qn + 2 "I]5 +'7

115 15 I3 17 +1 7 20o +' 5  1n +'3

'n ' 41 +1 +1+ '2' +21+ +13 2T1 +21n+n7 7 0 '3 7 1 5 +7 1 +' 3 5 7

and
(X(O), X)1 7 ), x71

3 ), X(f 5 ), X01 X ))

Evaluation of the Gauss' products ['n'y in Table 5 with (3.20) and (3.22)
xy.

results in the matrix

1 4 -4 2 -4

1 0 0 -2 0

X -1 0 -2 0 2 (3.23)

1 -4 0 2 0

-1 0 2 0 -2

Multiplication of X and X results in a vector

-(-1, -, 3, 7, -5)
-I1,V -

"- N\ . g.. .. . . . .. .> ~N . >U t.- -
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or alternatively

-1if r

I euv(T) =~\ 3 if rE (3.24)

7 if TE 5

-1 if .E 1"7

Whenever two m-sequences, say w and z are decimations of

"the m-sequences u and v respectively such that wj U and zj = Vsj, then
sj j s

p-1
e (T)= E u ~ e~±S (si-) (3.25)w,z sj Vsj+j =oU,v

Hence, to obtain all periodic cross-correlation values for the m-sequences

of a certain length p, it suffices to determine one matrix X . For

p = 15 and p 31, a matrix X is givzn in (3.23) and in Goloeb (1968)

respectively. Table 7 and 8 specify a mati-ix X obtained by evaluating
*1

the Gauss' products of cyclotomic cosets for the indicated m-sequences

of length p 63 and p 127.

We will encounter tGauss' product of cyclotomic cosets in com-

bination with Golomb's theo)rem again 4n Chapter 5 where the periodic cross-

correlation of Gold sequences and Kasami sequences are discussed.

3.5. Maximal connected sets

Goll and Kopitzke (1965) obtained from their data, sets of

m-sequences of period p, called maximal connected sets, which are the

largest possible subsets of m-sequences for which any two sequences in

the same set have a preferred three-valued periodic cross-correlation
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Table 7. Gauss' products of cyclotomic cosets evaluated for

rn-sequence u with octal polynomial 103; p 63.

0 1 3 5 7 9 11 13 15 21 23 27 31

16 6-66 3-6-66-6-2 -6 3-6
t7 ~~1 2 2 2 -2-1 2-2 -2-2 -2-1 2

1 2 2 -2 -2 -1 -2 -2 2 2 2 -1 -2
-1 2 -2 -4 2 1 0 -2 0 0 0 -1 4

1 -2 -2 2 2 -1 -2 2 -2 2 -2 -1 2
1 -2 -2 2 -2 3 -6 -2 2 -2 2 3 2

2 - 2-2 0-2-3 02 0 003 0
1 -2-2 -2 2 -1 2 22 -2 2 -1 -2

-1 -2 20 -210 2 40-4 -1 0
-- 66 0 6-3 0-6 00 03 0

-1-2 2 0-21 0 2-4 04-1 0
1 -2 -2 -2 -2 3 6 -2 -2 2 -2 3 -2

-12 -2 4 2 1 0-20 0 0-1 -4

Table 8. Gauss' products of cyclotomic cosets evaluated for

rn-sequence u with octal polynomial 211; p 127.

0 1 3 5 7 9 11 13 15 19 21 23 27 29 31 43 47 55 63

-17 7 7 -7 7 -7 7 -7-7 -7 -7-7 7 -7 7 7 -7 7
1 7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 7 -1 -1 -1 -1
1-1-13-1-1 -1-1 3-5 33 -1 3-1 -5-1-1 3
1-3-1 3-5 -5-1 3 3-1-1 -1-1 -1 3-1-1 3

--- 3 1 -1 1 -1 -3 5 -3 -3 1 3 1 -5 -11 3
1-11-5-1 33-1 3-1-5 -1 3-1 -1-1 3-1 3
-1-1-1 -5 1 3-3 -1-3 1 5 1 -3-1 1-1 31 3

1 1- 1- 1-1 7 -1 -1 -1 -1 -1 -1 -1 -1 -1 7 -1
-1-13 3-3 3-3-11 1-3 5 1-5 1-1 -1 1-1

x -1-1-5 3 5-1 1-1 1-3 -3 1-3-1 13 3 1-1
- 13 -1 -3-5 5-1 -3-31 1 1-1 1 3-11 3
1-3 -1-3 -1 1-15 1 1-3 -33 1-1 3 1-5
11113 -3 -1 1 -3 1 -3 5 3 1 3-511
1-3-1 3-1 -1-1 -5 -1-13 3 3-1-1 3-1 -5

-7 -1 -1 1-1 1-1 11 1 11-1-7-1 -1 1-1
1-1 -5 3 -5-1 -1 -1-1 3 3 -1 3 -1 -1 3 3 -1-1

1- -1 1-1 3 3 -1 -1 3 -1 3 -5 3 -1 3 -5 -1 -1
-1 -1- 1 1 7 1 1 1 1 1 -1 1 -1 -1 -7 -1
1-33 3 33-1 -13--1 3-5 -1-5-1 -1 -1-1-
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function, i.e., 0 (T() takes on the values -2 L(n+2)/2J- 1 , 2 L(n+2)/2J- 1U ,V

and -1 only. Any pair of primitive polynomials which yields a sequence

pair with a preferred three-valued periodic cross-correlation is called

a preferred pair of polynomials as discussed in Pursley (1976). Clearly,

for preferred pairs of polynomials, which generate m-sequences u and v,

the peak parameter e (u,v) defined in (1.8) equals
max

maxSemax (U,V) = 2 L(n+2)/2J +1 .

For example, the first six polynomials in Table 4 form a maximal

connected set S of six m-sequences of the same length p 127 for which

9 maxtO (U,V) u S, vES= I + 2L(6+2)/2J =17.

Other m-sequences of length p 127, not maximal connected, can form

"pairs with correlation peak values as high as e max(u,v) 41. The size

of a maximal connected set of m-sequences is rather small. In fact

all sets have a cardinality less or equal to six for p S 4095 while in

some cases, such as for n 0 mod 4, the cardinality is zero.

In a first analytical result, Gold (1967) established a bound

on 0 (uv) as a function of u and v.
4 max

Theorem 2: Let fl(x) be a priwitive polynomial of degree n and let
be a root of fl(x) in GF(2n) If f (x) is the minimal polynomial of

t

where t - 2L(n+2) /2 1 1, then 8 (u,v) • t for the sequences generatedmax

by f (x) and f t(x).

Notice that f (x) does not have to be primitive. Theorem 2 is
t

a special case of more general reqgul~ts obtained by Kasaini (1966) for a
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large number of values t 2h + 1. One such a result is

Theorem 3: Let fl(x) as in Theorem 2 and ft(x) is the minimal polynomial

hof ft(x) where t 2+1 and 0<h < n. Let c denote the greatest

common divisor of the integers n and h. If n/c is odd then 8 (r) - -1U,V

for -2 nc- 1 values of T, ,v) = - 1 - 2 foru'v

2n-c-l- 2 (n-c-2)/2 values of T and 0 (Tv) = - 1 + 2(nc)12 for 2n'c'l

+ 2 (n-c-2)12 values of T.

A more complete discussion is given by Pursley (1976). The

results of Gold and Kasami form a basis for the construction of large sets

of sequences with good periodic correlation proporties and are discussed

in Chapter 5.

3.6. Aperiodic correlation functions

From the analysis of the direct sequence SSMA system as pre-

sented in Chapter 1, it is clear that the odd cross-correlation function

•u v(1), as defined in (1.6) is as important as ev(•)" As shown in
u'v u ,v

sections 3.4 and 3.5, u'v (1t) displays certain regularities as a function

of I and the polynomials f(x) which generate u and v. The odd cross-

correlation u (L(), however, seems to be refrained from any suchu'v

regularities -- and must be computed for each . -- hence the peak param-

eter max(UV), as parameter emax (u), is very sensitive to the cyclic shifts

of the sequences u and v.

Whenever the phase shifts of the sequences are already fixed due

to other requirements such as a low value of the autocorrelation parameter

(u), the cross-correlation parameters can readily be computed.

•]•• • :- • ) "• :" " " ': '":; ',''•'" ' ' ":'•.::'i• : - :•:-•::",:;• '• ,-•• -":::5' • L.:.':•z. . , :.ma x .. .. ,:' f~ ' •" .'' -'.•-- . . : ,
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For example, in Table 9 the parameters 86 (u), 9 (u,v) and
max max

9 (u,v) are tabulated on, below and above the diagonal respectively, for
max

the auto-optimal m-sequences of length p - 127. These sequences are

indicated by the polynomials f(x) which generate them. The symmetries in

the table are due to the fact that ma(u',v') = (uv) and 0 (u',v')max max max

= 8ax(u,v) whenever u' and v' are reciprocals of u and v respectivelymax
k(see Section 3.3). Whenever v = T u, e (Uv) - (u,v) p. Hence,

max max

those values are omitted from the table. Notice also that for the maximal

counected set S formed by the first six m-sequences in Table 9,

-max(e (u,v) u E S, v Es] = 33c max

The interference parameter r(u,v) as defined in (1.20) for the

auto-optimal m-sequences of length p 127 is tabulated in Table 10.

The auto-optimal m-sequences in Table 10 are, as in Table 9, indicated

by the polynomials f(x) which generate them. Only one-fourth of the

interference parameter values are tabulated because r(u,v) - r(u,v') when-

ever v and v' are reciprocal sequences. Notice the higher interference

between an m-sequence and itself or its reciprocal. This is a good

argument, not to use an m-sequence and its reciprocal in the same set of

signature sequences.

It is not surprising that m-sequences, which have many charac-

teristics in common with random binary sequences, yield values of r(u,v)

which are close to Er(u,v) 2p2 as in (2.12). In fact, all values

of r(u,v) in Table 10 -- the values on the diagonal excluded -- are within

the range fEr(u,v) ± /var(r(uv))] for random binary sequences.

1V
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Table 9. Correlation values in the auto-optimal set of m-sequences; p 127.

22222332232323333332
1 3 4 2 0 0 2 2 6 7 4 76I005

17 77 3 3 1 5 731 13• i. I~~ 7 5 7 7 33 3 5 1 1 1 5 5 73I13
S ..... .. La b, a b

211 17 33 31 27 27 31 39 27 35 25 37 45 33 47 33 35 29 37 29 27
217 17 15 31 31 27 29 31 37 35 31 45 35 23 37 33 29 29 31 43 29
235 17 17 17 27 31 29 29 35 27 29 33 23 37 29 33 27 31 33 33 31
247 17 17 17 17 31 29 33 29 31 33 47 37 29 35 33 29 29 23 25 53
277 17 17 17 17 19 27 33 33 25 39 33 33 33 33 37 31 29 29 29 35
357 17 17 17 17 17 17 31 39 29 27 35 29 27 29 31 41 31 31 25 35
323 17 17 41 17 17 17 17 41 31 41 29 29 31 29 29 31 37 27 27 27
203a 17 17 41 17 17 41 17 17 37 37 31 33 23 29 31 27 37 25 25
203b 17 17 41 17 17 41 17 17 35 29 43 33 25 29 25 27 25 43 33
325 17 17 17 17 41 17 41 41 41 19 27 29 31 53 35 35 27 25 33 37
221 21 41 41 41 41 141 17 17 17 17 33 31 27 27 31 39 27 35 25
361 41 21 17 141 41 41 4 141 17 17 15 31 31 27 29 31 37 35 31
271 41 17 21 41 17 41 17 17 17 41 17 17 17 27 31 29 29 35 27 29
345 41 41 41 21 141 17 17 17 41 17 17 17 17 31 29 33 29 31 33
375 41 41 17 41 21 17 41 41 41 17 17 17 17 17 19 27 33 33 25 39
367 141 41 414 17 21 17 17 17 41 17 17 17 17 17 17 31 39 29 27
313 41 41 17 17 41 17 21 41 41 17 17 17 41 17 17 17 17 41 31 41
301a 17 41 17 17 41 17 41 21 21 17 17 17 41 17 17 41 17 17 37
301b 17 41 17 17 41 17 41 21 21 17 17 17 41 17 17 41 17 17 35
253 17 17 41 41 17 41 17 17 17 21 17 17 17 17 41 17 41 41 41 19

Table 10. Interference parameter r(u,v) for the auto-optimal

set of m-sequences of length p 127.

211 217 235 247 277 357 323 203a 203b 325

211 41214 33622 32722 32022 29070 34394 32978 31486 33114 30250
217 40222 30954 31406 31446 29554 32666 34118 35186 32066
235 42046 32570 33714 32974 32246 33106 30766 33310
247 40326 34054 32002 29546 30486 34194 33634
277 41294 31146 31938 33934 31290 34202
357 41958 31258 30806 30626 30770
323 39870 33538 32670 33598
203a 39902 29698 32442
203b 42358 33830
325 42894

- r - • - • " :€" . . .. ' - ---------•: --"••: " - .-.- , ' :" - ''•<:i'." " *"•.--•••'•:••," •••;•! •,--•'"•'
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In Appendix C, the correlation parameters •a(u), a (uv)max max

and e (u,v), as well as interference parameter r(u,v) are given formax

the AO/LSE m-sequences (see Definition 2) of length p 31, 63, 127 and

255.

Whenever it is possible to relax the autocorrelation require-

ments, one might try to minimize the cross-correlation parameter a (uv).max

Even for small sets of -- quences, however, the amount of computation

required to find the cyclic shifts which, for example, minimize AC

becomes rapidly prohibitive. A discussion about the computational com-

plexity of the correlation problem is given by Pursley and Sarwate (1976).

Sywyk (1975) obtained some results for auto-optimal m-sequences of length

p 63. A sub-optimal result for the above mentioned m'--1mal connected

set S of six m-sequences of length p = 127 is reported in Tabie 11. With

the indicated binary loading, one obtains 0 29 compared with 9 - 33
c c

for the auto-optimal loading. Nctice, however, that 9 has increaseda
from a previous tow value of -19 (see Table 4) to e 23. Thea a

resulting values of r(u,v) are also given in Table 11.

Finally, to obtain an indication of how small 8 could be, ac

triple of polynomials (211,217,235) was selected from the maximal connected

set S. We established that a lowest value 0 `3 is achieved for two
c

sets of register loadings, here reported in Table 12. Notice that B - 29a

and 9 - 21 respectively.
C



45

Table 11. Maximal connected set of r-sequences for which 29

and interference parameters r(u,v) for this set.

Poly. Loading' max (u)

a217 235 247 277 357

211 1101010 19
217 1101111 23 211 32770 28998 33202 32870 32290
235 1101000 19 217 32810 33014 33050 32038
247 1111111 23 235 30298 31550 32730
277 0111111 23 247 32458 33350
357 0101110 23 277 33482

Table 12. Optimal triples of m-sequences { 211, 217, 235) with ^0 23
C

and interference parameters r(u,v) for these triples.

Poly. Loading* x (u)

217 235

211 0100000 21
217 1010011 29 211 30494 28738
235 1111101 23 217 33362

217 235
211 0100000 21
217 0010001 19 211 29714 28790
235 1110111 19 217 32442

...................................
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CHAPTER 4

ON TIHE MOMENTS OF THE APERIODIC CORRELATION FUNCTIONS

While the relationship between the periodic correlation parameters of

m -sequences and the polynomials f(x) is rather well-understood (see Chapter

3), it is less clear how those polynomials relate to the aperiodic correla-

tion parameters. In this chapter we report our work on one particular

relationship which had the potential of being a possible sieve for m-

sequences with good aperiodic correlation parameters.

4.1. Third moment problem

Our investigations were inspired by the work of Lindholm (1968) who

was interested in the weight distribution of M-tuples of long m-sequences.

He actually established a relationship between the polynomial f(z) which

generates the m-sequence and the moments of the M-tuple weight distribu-

tion. Related result3 were obtained by WainbeTg and Wolf (1970) who

derived the first six moments of the M-tuple weight distribution while

Weathers, et al., (1974) obtained expressions for hybrid m-sequences.

In this chapter we consider the first few moments of the aperiodic

correlation function values when the correlated m-sequences have an at

random selected cyclic phase shift. In particular, we obtain the first

few moments of the odd correlation functiun values. For a number of

m-sequences, the moments were evaluated, and compared with actual data

acquired from those m-sequences.

4.

i *ii i ii iiii iiil i iT
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4.2. Moments of the aperiodic correlation functions

Let • - TXu and i - TYv be two cyclic shifts of m-sequences u and v

respectively. When we assume x and y to be uniformly distributed over the

integer values in the range [O,p-l], the moments of the aperiodic auto-

correlation function C_(1) and the aperiodic cross-correlation function
u

C ,,(L) can be calculated in a relatively straightforward manner, as is

shown in Appendix D.

In Appendix D it is also shown that the mathematical expectation of the

interference parameter r(U,!') equals,

Ezr(u,v)) - 2(p -1 + p-) (4.1)

which is practically equal to the mathematical expectation of Efr(u,v)}

for random sequences as derived in Section 2.3. Furthermore, the results

in Appendix D enable us to derive in Section 4.3, the first three central

momentz of the odd correlation functions e ;-(Z) and e (1).

4.3. Moments of the odd correlation functions

With the odd cross-correlation function

., -(.6) -- (.6(-p) - C,•(L), 0 L $. • p-1  (4.2)

one obtains with (D3),

-(2-p) (4.3)

.~ >0.
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Similarly with (D4),

p= p(P-21), 1 # 0 . (4.4)

The variance of 6- -,() follows from (D5) and (D9)
u'v

A A2 2 ,

pl +p 3p (p-21) 2 -p] +p 5 (p-21)) (4.5)

while with (D6)and (DlO) one obtains

-2
var((6U ()= 4Zp' (p+l)(p-1), 1 # 0 • (4.6)

The third central moment of e- u,() is denoted as
u,.

With (4.3) and (4.5) this reduces to

where

-(6) p 6f(2-p) 3 (2.3p2) - 3p3 (p 2 _ 1)(21.p)j (4.7)

and, after substitution of (D13) and (D17),

,,3 -P2( ) (N\_u6(p;R2 +.112 (p-£ (p-2)(p (2.3p)(p.21)+6•(3)2 3 P•2+ (p.)2(p.2)(2)

+ -2  -Zt[B()Bv(£) CB(p-LC-(p-L+ 6p'2(P+l) (B3(') Bu3() + C3(1 +'

z u,) + U((p.,£,)B (p-L)") (4.8 )

C- -)C(-) ----3 3 3 "



49

For the third central moment of 9~,(1) one obtains with (D14),

(D19), (4.4) and (4.6),

X- (1) =W E.(1)) + 6 (4)

where

8(1) p p 3 (p-2t) [4L(1-p) (2 +3p) -p 2 ] (4.9)

and
E(62(M)] 8EC3u(1-p)) + 12EJC[(A-p)3 + 6E[C u(-p)) + I

12p[3 (2p+l) -2 (3+21)) + 1 + 48p"I (p+l)Bu(I) (4.10)

Hence,

X-(A) 8 2p2 -3 (p+l) [3p-1(p+2)) + 48p' (p+l)Bu(L) (4.11)
p p 3

U
B (1) represents the number of trinomials (see Chapter 3) of
3

degree up to but not including A, which are divisible by the primitive

polynomial f(x) which generates m-sequence p (or u).

Cu () represents the number of trinomials of degree L and higher,
3

with the exponent of the intermediate term smaller than or equal to A-i,

which are divisible by the primitive polynomial f(x) which generates

m-sequcnce p (or u).

It is shown in Appendix D that

C (1) + 3B (L) -CvCt) + 3Bv(.L) -().(4.12)

To find BU(A) -- and thus CU(L) "- one can use Lindholm's equality
33 3•

(A)

B (1) =t- (L -u 1 d (4.13)
3J.1

.. C.t.
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d
Here equals the number of trinomials of the form x + x + 1,

I3

with 1 < c < d < £-l, which are divisible by f(x).

Notice that (4.8) and (4.10) imply

U,0 (L) = - xj, (p-I) (4.14)

and
() - XZ..(p-Z) (4.15)

which reduces the number of computations for each parameter with a factor

of 1/2. Furthermore, for any m-sequence p of length p 2n- 1 generated
d C

by polynomial f(x) of degree n, there does not exist a trinomial x + x

+ I with d < n, which is divisible by f(x). Hence, for I < n

BP = C3M = 0 Vu (4.16)

4.4. Third moment evaluation for m-sequences of length p = 31 and p = 63

In this section the third central moments of the odd cross-

correlation and autocorrelation functions as discussed in Section 4.3 are

evaluated for the m-sequences of length p = 31 and p = 63. As an example,

the values of Bu(() and C (1) for the m-sequences generated by3 32

fl(x) = x5 + X + 1 (045), f 3 (x) = x5 + + x + x + 1 (075) and

= 5 +4 2
i5 (X) x + # + x + x W 1 (067) respectively, are given in Table 13.

Reciprocal polynomials give the same values for B3(I) (and thus for

33

To demonstrate this Table 13, consider B (11) and C3(1I for

the m-sequence u generated by fl(x) x5 + X + 1. The trinomials of
5 x2 x19

the form X + X + 1 contributing to B3(ll) are x + + 1 and +

4 -
X + 1, i.e., B3(ll) - 2. .nee, Bu(ll) - 7 and with (4.12) one obtains

3I3
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Table 13. B (4) and C (1) for m-sequences of length p 31.

52 5 4 3 2 54 2

f W xS+x +1 f 3 (x) x +x +x +x +1 fy(x) -- +x +x +x +1
1 5 532 54 3

f 15 (x) Yx+x+1 T(x) x x +x +x+x f+1  (X) 1x+x+x +x +

(i) c (1) t B() M

1 0 0 1 0 0 1 0 0
2 0 1 2 0 1 2 0 1
3 0 3 3 0 3 3 0 3
S4 0 6 4 0 6 4 0 6
5 0 10 5 0 10 5 0 10
6 1 12 6 0 15 6 0 15
7 2 15 7 0 21 7 021
8 3 19 8 0 28 8 1 25
9 4 24 9 1 33 9 2 30

10 5 30 10 3 36 10 3 36
11 7 34 11 5 40 11 4 43
12 9 39 12 7 45 12 6 48
13 11 45 13 10 48 13 8 54
14 13 52 14 13 52 14 11 58
15 16 57 15 16 57 15 15 60
16 19 63 16 19 63 16 20 60
17 23 67 17 23 67 17 25 61
18 27 72 18 28 69 18 30 63
19 32 75 19 34 69 19 35 66
20 38 76 20 40 70 20 41 67
21 45 75 21 '47 69 21 47 69
22 52 75 22 55 66 22 54 69
23 60 73 23 63 64 23 62 67
24 69 69 24 71 63 24 71 63
25 79 63 25 80 60 25 80 60
26 90 55 26 90 55 26 90 55
27 101 '48 27 101 48 27 101 '48
28 113 39 28 113 39 28 113 39
29 126 28 29 12C 28 29 126 28
30 140 15 30 140 15 30 140 15
31 155 0 31 155 0 31 055 0

I,.

:.-.
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u (11) = 34. The trinomials of the form x + + 1 and their
3 + x

respective contributions to C3(11) are tabulated below,

Trinomial Contribution

5 2Sx + x+I

10 4+6x + 1

16 +x 9 +1 2

18
x +x +1 10

20 8

22 7
x +x+l 4

27 6
x +x+ 4

x29 + 3 + 2

Total: 34

The parameters X (1) and X.,(L) for m-sequences of length p = 31

are sketched in Figure 4 and Figure 5 respectively. The same parameters

for m-sequences of length p - 63 are sketched in Figure 6 and Figure 7.

4.5. Discussion of X-M() and %- -(A

It is clear from the results in the previous section that the

mean and the variance of the odd correlation function values do not

depend on the particular m-sequences selected. The third central moments

X~(L) and X~ (.) however, clearly do depend on the polynomials f(x) as

specified by the expressions in Section 4.3. While X-(2) and X. -(A), Vil

are equal to zero for random binary sequences (see Section 2.3), for the

m-sequences they vary widely when I takes on values in its range. Recall

that a third central moment provides a measure of skewness being positive,

zero or negative as the distribution has a long positive tail, is

......................
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symmetrical or has a long negative tail. Hence, the various sets

and XX- ,(L); £ =,l,...,p-l3

for different m-sequences and m-sequence pairs respectively could be

potentially useful as sieves for sequences with good correlation properties.

For example, let u' T u with x' chosen at random from the integer values

in [0, p-l]. The set of values (eu(I); I = 1, 2 ,...,p-l for m-sequence
Tu

ut can be modelled as a realization of the set of random variables

.; 1,2,...,p-l]. Hence one could expect some correlation between

parameters such as 6 (u') or min 6 (u') and X-.max max u

On the other hand, this correlation might not be high enough

to show up in the above mentioned parameters when the actual r-sequences,

selected with X- as sieve, are compared. Furthermore, if such a correlation
u

exists, it is not yet clear which measure on the values in X- and X~ -
u U'v

should be chosen to use as the actual sieve.

One measure might be the presence of a certain number of high

positive or negative peaks in X- or -.
u Uv

Mother measure might be the Euclidean norm ilxu1 of the vector

• (0) z.! • (1),.., (p-l) ~.

lix-'I - F. 0X a)) (/2 (4.17)

The norm IXi.l is defined in a similar way, with 1 0. An insert in the
u

Figures 4 through 7 gives the Euclidean norms for the indicated

rm-sequences.
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A problem with both measures, and presumably will all, is

the dominating and equalizing presence of the high peaks in X_ and
U

for I< n, which do not depend on f(x).U'V

4.6. Actual data for m-sequences of length p 31 and p - 63

In this section we present some actual data obtained for the

m-sequences used in Section 4.4. Additional data can be found in

Sywyk's work (1975).

Let Fa denote the number of times a certain value of max(u')

occurs when x' in u' = TxCu takes on the values Ol,...,p-l. Similarly,

Fc denotes the number of times a certain value of 8 (u'.,v') occurs
max

X IUIwhen x' and y' in u' - T u and v' = TY v respectively, both take on the

values Ol,...,p-l. Fa and Fc are tabulated in Table 14 for a number of

m-sequences with the polynomials f(x) in octal notation.

While a larger number of positive or negative peaks in

X( (or X-.,) or a higher value of x (or I) might indeed have

some positive correlation with a larger number of high values of
A A

8 (u') (or 8 (u' ,v')), the effect as a whole seems rather weak.
V= max

Actually, the data shows that the m-sequences do behave rather much alike.

Other results, collected while obtaining auto-optimal Gold sequences and

Kasami sequences (see Chapter 5) do not give more conclusive infor-

mat ion.

Hence, we conclude that X_ and X-_-, while interesting on their
U U,

own merits, are less useful as sieves for the selection of m-sequences

with good correlation pa:ameters such as a low worst-case value of

0 (u) or O (u'.V').
max max
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Table 14. Fa and Fc for some r-sequences of length p 31 and p 63.

L
p =31

Poly. gmax(u') : 7 9 11 13

045 (051) Fa : 4 18 9 0
075 (0:7) Fa : 9 13 8 1
067 (073) Fa : 4 16 9 2

Poly. pairs 8ma (u',v') : 7 9 11 13 15 17 19 21

(045,057) Fc : 0 53 339 333 156 56 20 4

(045,073) Fc : 1 60 321 342 166 53 14 4
"(057,073) Fc : 0 39 324 336 176 66 18 2
(045,051) Fc: 10 188 336 216 121 67 21 2

p 63

SPoly. Wu) :11 13 15 17 19 21

103 (141) Fa : 8 7 22 16 9 1
A 147 (163) Fa : 9 17 24 11 2 0

133 (155) Fa : 9 22 18 12 2 0

'1

i

I ' ,, .• . ., ...<• .: • .. .•. : ..t .-•- : •a:, .::--t ,: ,..-0 .=,•-•- .•,. ,'_. .,..• o. .•.• .•• .• • ..,., ::.. ,. . .:•< _ .:•:.
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CHAPTER 5

CORRELATION PARAMETERS FOR SUMS OF PAIRS OF M-SEQUENCES

In the previous chapters the discussion has been limited to

m -sequences because those sequences have excellent periodic auto-

correlation properties. Sets of m-sequences with good periodic cross-

correlation properties, however, have a small cardinality (see Section

3.5). In this chapter we will expand our discussion to larger sets of

potentially good signature sequences due to Gold (1967) and Kasami (1966).

5.1. old sequences

Theorem 2 in section 3.5 yields a pair of m-sequences of common

period p - 1 for which the pairwise cross-correlation is bounded by

2 [•n+2)/2J +I. Here n #0 mod 4 otherwise f (x) is not primitive.

In fact, the greatest common divisor of p and t in Theorem 2 is

1 n #0 mod 4
g c d(p,t) (5.1)

n 0 mod 4

as was pointed out by Sarwate (1976).

Above result is contained in the stronger and more general

Theorem 3 which yields preferred pairs of primitive polynom-als for

n odd and c I or n 2 mod 4 and c 2 but not for n 0 mud 4. More
• 2h

preferred polynomial pairs can be found when t 2 + I in Theok'eL 3 is

replaced by 2 - 2h + 1, as reported by Golomb (1968). Furthermore, the

number of polynomials for which this theorem holds can be doubled with a

propnsition in Pursley (1976). This proposition states that polynomial

pairs (f 1 (x), ft(x)) and (f 1 (x), fq(x)) generate m-sequenc', pairs with

"",>'r "•!-., ,,• •".',,'.•-,..;',• •:•';'• -"'' .' •'' '-.••: ,:• ••:.•.• -• -••• .•- . .•.•- ,•. ••..• . - ., ,• ...
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similar cross-correlation values whenever

qt 2 mod(2 -1), for some i, 0- i n-i . (5.2)

Analytical results such as above, as well as experimental

results such as discussed in section 3.4 yield m-sequence pairs (u,v)

such that e (u,v) L(n+2) + . Furthermore, it enabled Gold (1967)max

and Kasami (1966) to formulate the following important result.
Ii

"Theorem 4: Lat fl(x) and ft(x) be a preferred pair of polynomials of

degree n whereby n # 0 mod 4. The shift register with the product

f 1 (x) ft(x) as its characteristic polynomial will generate a set of 2n + 1

distinct sequences of period p = 2 n - 1. Any pair of sequences in this

set has a cross-correlation function bounded by 2 L(n+2)/2] + 1, and any

sequence in the set has an autocorrelation function whose out-of-phase

values are also bounded by 2 L(n+2)/2j + 1.

These sequences and all their cyclic shifts are usually referred

to as Gold sequences. The set of distinct sequences in Theorem 4

consists of characteristic m-sequences 6 and v generated by fW(x) and

kf (x) respectively and sequences of the type W - • T v, k 0,1,..., p-I,
t P1

whereby the addition is modulo 2. Hence, the Gold sequences can also be

generated by two shift registers with characteristic polynomials fW(x)

and f (x) respectively and one modulo 2 adder (see Dixon (1976)).

Clearly the periodic cross-correlatior function between m-

sequences P and v in the set of Gold sequences is three-valued

because f (x) and f (x) are a preferred pair. The periodic crosi-correlation

kof m-sequence 4 and sequence w a L + T v can be regarded as a special case

di ,
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of the periodic cross-correlation function 0 (Z) of the sequencesWz

w i+Tkv and = + v, with w (-l)WJ and z = (-l) , i.e.,
jj

k
w = u.T v and z = u'Tmv, which is discussed in the next section.

5.?. Periodic correlation functions of sums of m-sequences

Let dH (w,C) denote the Hamming distance between any two

sequences w and C, both of length p, and let WH(w) denote the Hamming

weight of sequence w. As before we assume the m-sequences p (or u) and

v (or v) to be in their characteristic form. Then

ew(z)(2)p -2dH(wT")

p " 2WH(w+T )

•'=p -2WH (ýt+ T +T A+TL + ) .

Therefore

p A.f A-0 mod p, m k

-I if -0 rmod p, m# k
S ()=) (5.3)

-1 if -+m-k -0 modp m# k

8 (k+s(.t)-r(I)) ,otherwise

U'v

whereby

Cr(A)••T +T() T v + +U 0

1js(A)u + + m 0 (5.4)

and 0 the all-zero sequence. As a special case one obtains, with u w,

F-1 , L0 moid p
u(•t) (5.5)uP (k+I-r(t)) othervise

L iii
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The choice of • and v characteristic in w and i is not essential for

equations (5.3) and (5.5) fnd would merely constitutes a change in shift

I because

e, -U() (1+y -x mod p), V1 (5.6)ue*u,v(

where 9 = TXu and TY.

Given a value of ..-k, the trinomial equations in (5.4)

(see Section 3.2) specify for each I the binary trinomials xr(A) + X+(1 •+ 4m-k

and xs(£) + + 1 which should be divisible by fl(x) and fi(x)

respectively.

For 1 1,2,...., p-I, the factor I - r(l) in equation (5.5)

takes on all the values in its range and 1 # r(l). This implies, among

others, that u (A) in (5.5) "will again be a three valued cross-
u'w

correlation function when u and v are preferred m-sequences.

The factor s(l)-r(l) in equation (5.3), however, will take on

specific values in [O,p-l]. Those values will depend on m-k as well

as the trinomial structure of the m-sequences involved. With the

difference s(t)-r(l) determined for all L, 8 v(k+s(L)-r(.)) still is a

function of k.

In the special case that m-k, equations (5.4) imply that

s(1) - r() ET if I cEfi for some i and y. Then if one adds a value k E I

to s (1) - r(t), th; resulting sum k + s(4) - r(l) E 1y, the Guss' product

of cyclotomic cosets 11 and I as defined in (3.17).
x y

Above facts explain why certain choices of k in the sequence

" + T k v can vield a peak parameter . (W) < (uv) and certain

k(kim) in sequence pair (W ji + TI , J Ai + 1:i,J) can yield a peak parameter

ea(W,Z) < 4 (uv). Here 6(u,v) is assumed to be obtsinud from the

..... x Max .. maxý:-':• "< • •- :.g•3••• •,'•:•,..i:..• • •/•`•.••• • ••4• • ``4? " . : .,"' .. ' . :•,, :.
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tables of Gold and Kopitzke (1965), Golomb's theorem (1968) or Kasami's

results (1966). Of course, other correlation parameters will depend on

(k,m) too.

From the results such as above, we can formulate;

Theorem 5: Let fl(x) and ft(x) generate the set b of distinct Gold

sequences P, u and w = • + T kU, k - 0,1,..., p-1 as in Theorem 4. Any

m-8equence in $ has a three-valued cross-correlation function with any

kother sequence in .V A seqtence pair of the type (w . + T v, • .+ TiU)

will have, as a function of (k,m), a three-valued or in some cases a two-

valued cross-correlation function. Furthermore any sequence ia 2' of the

type w = ý + Tku will have, as a function of k, an autocorrelation

function with out-of-phase values+ 2 L(n+2)/2J or in some cases

[-l,-i + 2 L(n+2)/ZJ.

It should be noted that equation (5.3) is not restricted to pre-

ferred pairs of polynomials. Hence, our investigation -- in the next

sections -- not only includes Gold sequences but many other sequences .of the

.1 ktype w = P + T u. Furthermore, we will study in Section 5.5 the special case

n/2
t 2 -1 1, n even, i.e., polynomial f t(x) is not primitive. The next

section illustrates our approach with an example for sequence length ? = 15.

5.3. Example for m-seguences of length p 15

Let i and V be the two m-sequences of length p 15 generated

by polynomials fl(X) - x4 + x + I and f 7 (x) x4 + x 3 + 1 respectively.

As was shown in Section 3.4
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-1 if IEJ 0

-5 if 1,.ET11

eu'(,V() 3 if IEI3 (5.7)

7 if AETI5

-I if L EI7

Hence, 9 ax(u,v) - 7.

Case 1: m k
!4

With i generated by fW(x) x4 + x + 1 one immediately obtains

T4ti + Tw. + u = 0 as a (trivial) first trinomial satisfying (5.4). The

other trinomials of the form specified by (5.4) are tabulated in Table 15

for the polynomials fl(x) as well as f 7 (x). Observe from this table

that s(l) -r(l) mod 15 E1iO, I1 and 1I5. Let k E117. Then the sum

k+s(t) -r(A) mod 15 EYI0 77, 11 i17 and TI5 7'7 This implies, with Table 5,

that k + s(A) -r(t) mod 15 f I5 ', VI, and therefore 9w(A) 9 (k+s(l)-r(l))
w UV

# 0 (TI) (uv) 7. Hence, e (w) 5 for kEll while e (w) 7
uiv 5 max max 7 max

for k • TI

Cae 2: m k

Let Gx denote a series of values,

Gx (x.2J mod p) , j 0,1,..., n-I (5.8)

and let

G(x,y) ((x.2j mod p, y-2j mod p)) , J 0,1,...,n-I (5.9)

•I•
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Table 15. Trinomial structure of m-sequences of length p 15.

Case 1: mr k

1 2 3 4 5 6 7 8 9 10 11 12 13 14 0

(023) r(l): 4 8 14 1 10 13 9 2 7 5 12 11 6 3

(031) s(l): 12 9 4 3 10 8 13 6 2 5 14 1 7 11

s(M)-r(l): 8 1 5 2 0 10 4 4 10 0 2 5 1 8::

7+s(A)-r(L): 0 8 12 9 7 2 11 11 2 7 9 12 8 0

Case 2: m k + 1

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0

(023) r(l): 4 8 14 1 10 13 9 2 7 5 12 11 6 3

(031) s(l): 9 4 3 10 8 13 6 2 5 14 1 7 11 :: 12

s(l)-r(l): 5 11 4 9 13 0 12 0 13 9 4 11 5

( := denotes the exceptional cases in equation (5.3))

Table 16. Sequence pairs (w,z) for which ma(w,z) < 7;
max

w = u-T kv ,z uT mv; p = 15.

rM-k k (k,m)

Gi 02, 03, G4, G(2,3), G(3,4), G(4,5),
G3 GO, G2, G0, G(0,3), 0(2,5), 0(7,10),
G5 02 G(2,7)
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denote a series of pairs. This notation can simply be extended to triples

G(x,y,z) etc.

Consider m -k +l. Table 15 indicates the resulting trinomials

S" "of the form specified in (5.4) and the resulting values of s(t) -r(l) mod 15.

Observe that k + s(l) -r(A) mod 15 f5 whenever k 2, 3 or 4. Again

let (k,m) indicate the sequence pair (w = p + 1 V, ý = + Tmu), then

e w'z(L) = e (k+s(l) -r(l)) # max (u,v) = 7 for the sequence pair

(k,m) = (2,3), (3,4) and (4,5). In fact one finds that a series of values

nm-k - GI implies a series of values k=G2, G3, and G4 or, alternatively,

a series of sequence pairs (k,m) = G(2,3), G(3,4) and G(4,5) for which

(8max(W,z) # 7 (in fact- 5). Table 16 shows the results for mr-k Gx,

x l, 3 and 5.

Examination of Table 16 reveals four triples (kil,k12 ,ki3) where

k indicates sequence w P + Tk ju, for which the pairwise peakij ij +

magnitude of the periodic cross-correlation function equals 5 instead of 7.

Those triples are G(i,5,11).

In the next section results for sequences of longer length will

be discussed.

5.4. Sums of pairs of m-sequences up to length p 255

The trinomial structure of the m-sequences 6ý and v and its

relation with the periodic autocorrelation and cross-correlation functions

kof w u + T v, k E [0, p - I] has been investigated for sequence lengths

up to p 255. The autocorrelation properties are the least attractive

aspects of the sequences w if compared with m-sequences. Hence, those

aspects received most of our attention. In mauy cases the AO/LSE phase
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shifts W of sequences w were determined and the cross-correlation values

of interesting subsets have been computed.

5.4.1. Sequence length p 31

The trinomials for the m-sequences of length p 31 are specified

in Table 17 and are easily obtained from each other with the decimation

property (3.7) of m-sequences.

Except in the case that the sequences are generated by reciprocal

polynomials, the m-sequences P and v will be preferred pairs, i.e.,

e max(U,V) = 1++2 2)(2+- )-- 9. With the Gauss' products of cyclotomic

cosets of integers modulo 31 as specified by Golomb (1968) one obtains
(w 2 L(5 + 2)/2.}

here emax(W) 1 - = 7 for exactly one value of k namely

k EI0 = 0 or w Li + v (and all cyclic shifts of w). Table 18 gives the

results for the periodic cross-correlation parameter e (w,z). The
max

asterisk indicates that 0 (Z) will be a two-valued function for indicated

values of (k,m).

A complete set of periodic autocorrelation parameters •A(W),max

La and M(w) for all values of kI is shown in Týle 19. The decimation

property (3.7) and proposition (5.2) imply here that pairs of columns of

k-values in this table can be obtained from each other by simple trans-

formations of cosets TI
X

As was the case for m-sequences, peak parameter mx (W) will

again depend on the cyclic shift of sequence w. Furthermore, recall

that M(w) + M(w) - 4S(w), Yw. Here M(w) is constant over kE1 X, some x.

Hence, the sidelobe energy can be used as a sieve for lcw values of M(M)

as long as kEll, some x, and Definition 2 (Section 3.3) can simply be
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Table 17. Trinomial structure of m-sequences of length p 31.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(045) r(l) : 18 5 29 10 2 27 22 20 16 4 19 23 14 13 24 ...
(075) r() : 20 9 26 18 8 21 29 5 2 16 12 11 17 27 25
(067) r(l) : 19 7 11 14 29 22 2 28 15 27 3 13 12 4 9
(057) r(l) : 12 24 8 17 28 16 9 3 7 25 30 1 27 18 21 ...
(073) r(l) : 13 26 23 21 7 15 5 11 25 14 8 30 1 10 6 ...
(051) r(A) : 14 28 5 25 3 10 16 19 24 6 23 20 30 1 22 ...

Table 18. Good 8 (w) or A (w,z) ; w u. 1•v, z u.Tmv; p 31.
max max

u v q emax(u,v) emax (w) kEx([x]) emax(w,z) (km)

045 075 03 9 7 £0) 7# G( 5,10)

045 067 05 9 7 [0] 9 all

15
045 051 0 11 7 [0) 7 G( 1, 2)

045 057 07 9 7 [0) 9 all

I 045 073 9 7 £0] 7# G( 1, 2)

Table 19. Periodic autocorrelation functions for w u.Tkv

with kT I ([x]); p 31.

u: 045 045 045 045 u: 045
v: 075 073 067 057 v: 051

8 (w) La M(w) k k k k 0 (w) a M(w) Mk
max max

7 10 510 £0) £0) £0] [£0 7 10 590 £0)
9 2 766 [5) [1] £7) £15] 9 4 654 £11)
9 4 830 (11) (15) [i1] [7. 9 4 878 [7]
9 6 798 [15) £31 £1) [11] 9 8 1134 [5)
9 6 1086 £7) [5] (5) £3] 11 2 958 [31
9 8 1054 (1] (7) (3] [1] 11 2 1054 £15]
9 10 1310 £3] £11] (15] [5] 11 2 1150 £1]
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extended to sums of pairs of m-sequences as well.

For the m-sequences u and v generated by fW(x) 045 and f3 (x)

075 respectively, Table 44 in Appendix E gives for each value of k the

cyclic shift y for which W TY(u.T v) is an AO/LSE sequence. As an

alternative specification of W, the table also gives the AO/LSE (octal)

loading of the shift register with characteristic polynomial fl(x)f 3 (x).

Tables 45 and 46 give similar results for the polynomial pairs (fl(x),

f 5 (x)) and (f 5 (x), f3 (x)) respectively. Notice that in each table, for each

value of k, the AO/LSE cyclic shift y yields 9a(w) < 9 (W),

A good choice for a subset of the AO/LSE sequences W in Table 44

is the set specified by (W:kE•0,• 5 }, supplemented with the AO/LSE

rm-sequences U and V. In Table 47, the peak parameters a (W), •a(W,z)
max max

and e (w,z) for this subset are tabulated. As predicted by Table 18,
max

the periodic cross-correlation parameter emax(w,z) equals 7 instead of 9

for a number of sequence pairs (w,z). The interference parameter r(w,z)

for this subset is tabulated in Table 48.

Finally we point out that the data in the Tables 44 through 46

can be related -- via equation (5.3) -- to the various cases in

Figure 5 (Section 4.4). No specific correlation, however, could be

established between, say, norm vad occurrences of maxW).

5.4.2. Sequence length p 0

As in Section 5.4.1, one obtains with the trinomial structure

and Gauss' products of cyclotodi~c cosets of kntegers modulo p a 63

(Table 6) the results tabulated in Table 20. Let .-' denote the set of

distinct Gold sequences P, v and - m t + T v, with i and v generated by
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k
Table 20. Good max(w) or max(w,z) ; w = u'T v, z u'T v; p 63.

u v (u,v) e (w) kEI ([x]) e ((w,z) (k,m)
max max x max

S•(44,45), G(45,50), G(37,44),
103 147 17 15 [0],[11],[27] 15* G(45,54), G(22,25), G161,62),

LG(59,62), G(55,62), G( 0,11)

103 155 23 15 (7], [91,[11], 9 G(12,21), G(33,42)
[15],[31]

G( 0, 1), G(17,18), G(20,21),
-•G(32,33), G(44,45), G(47,48),

G(55,56), G( 1, 4), G(20,23),
G(22,25), G(26,29), G(27,30),
G(34,37), G( 2, 7), (11,16)
G(13,18), G(20,25), G(22,27),

103 141 15 13 [13],(213 13 G(26,31), G(31,36), G(39,44),
G(47,52), G(58, 0), G(141,21),
G(15,22), G(30,37), G(39,46),
G( 6,15), G( 7,16), G(11,20),
G(14,23), G(20,29), G(29,38),
G( 9,20), G(10,21), G(20,31),
G(36,47), G(46,57), G(59, 7),
G( 0,21), G( 6,27), G( 9,30)

103 163 23 15 [3], (5], (7), 9 G(21,30), G(42,51)
(11],(27)

G( 0, 1), G(27,32), G(45,54),
103 133 17 15 [O], (1],[273 150 G( 1, 4), G( 1, 8), G0(16,27),

G(10,17), G(17,20), G( 5,10)

!..
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the preferred polynomial pair (103,147). The data in Table 20 shows, for

example, that a subset of sequences (w: k E10%111 2)7 yields a peak

parameter e0,x(W) -26 J -1 15. Notice also that in some sets

of sequences w, with p and v generated by a non-preferred polynomial

pair, a considerable decrease of 0 (w) or e (w,z) can be achieved --

if compared with 8 max(u,v) -- for certain choices of k or (k,m). Table 21

specifies certain combinations of (k,m) -- up to four sequences in a

subset -- for which the periodic peak parameters are both equal or better

than 8 (u,v) for a specific (u,v) pair.max

A complete set of periodic autocorrelation parameters is shown

kin Table 22. Furthermore, all AO/LSE sequences W TY(u.T v) were obtained

for the polynomial pairs (103,147) and (103,133) with the results reported

in Appendix E, Tables 49 and 50. For the AO/LSE phase shifts of sequences

w in the subset tw: kEqoI T1 ,27T of -', the values of max (w), max(w,z)

and 0 (w,z) as well as r(w,z) are shown in Tables 51 and 52 respectively.
max

Observe that 9 max(w,z) 15, in fact the function 9wz () is to-valued

for a large number of pairs of sequences as was predicted in Table 20.

Of course, other requirements may lead to different choices of

subsets. For example, one might want to achieve a lower average value --

over a subset -- of the interference parameter r(w,z). Tables 53 and 54

show the peak correlation parameters and r(w,=) for the subset

(W.k~r 1 3 Ti_ F 11 or this subset, the average val.ua of r~w?7) is

19'F. lower than for subset (W:k 'l 'll' T
'01'11' '27,

Let •"be the set of distinct sequences -, ., and f a u+ L,, r-ith

u and v generaz-ed by polynomial pair (103,141). A low value of 9 6.,)

13 -- with aw(L) in this cast a sevea valued function -- is achieved for

-. . . . . ..............
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Table 21. Good 8 (w) and 8 (w,z) for selected sec., coubinations;UMa max
w uTkv; z u.Tmv; p = 63.

u v 8max (w) 0 (w,z) Good (k,m) combinations

G(44,45), G(45,50), G(37,44),
103 147 15 15 1G(45,54), G(22,25), G( 0,11),

G(44,45,50), G( 0,11,44), G( 0,11,25),
IG(45,54,50), G(11,25,27,514)

103 155 15 15 G(15,18), G(30,51), G(51,62), G(47,50),
Gk55,62), G(37,44), G( 9,18)

G( 0, 1, 4), G(20, 9,31), G(17,18,61),

103 141 15 13 G(20,11,44), G(18,13,47), G(22,25,15),
G(22,25,27), G(44,39,54)

103 163 15 15 0(34,37), G(45,48), G( 6,!1), C(10,17),
G(37,44), G(45,54), G(12,33)

1 3( 0, I), G(27,32), G(45,54),•-103 133 15 15 G( 1, 4), G( 1, 8), G(16,27),

G( 0, 1, 4), G( 0, 1, 8), G( 1, 4,54),
i G( 1,45,54), G( 1, 4,54,27)

Table 22. Periodic autocorrelation functions for w u

with kE Ix [xl); p 63.
x

u: 103 103 u: 103 103 u: 103
v: 147 133 v: 155 163 v: 141

4 • (w) La M(w) k k e (W)La M(w) k k M C (w)L M(w) k
max maxmax

15 14 3198 [0) (0] 15 2 2110 [7) [T7 13 6 3182 [21]
[11] (1) 15 2 2366 [31) [11) 13 6 3502 [131

-- [27) [27] 15 4 ?110 [9) [27] 15 2 3646 (31]
17 2 5118 (31] (5) 15 1 2622 [15) (3) 15 2 37142 [11]

417 1 2110 [15] (15] 15 4 3390 [111 15] 15 2 3902 [7)
(- - 13] [31) 23 2 3!66 [5] (1] 15 2 14062 [15]
"[23] [ill 23 2 3678 £23] C.1] - 1 1- 34'8 £23]

17 8 4158 [3] [31 23 2 4126 Il (•3] 15 4 3982 [3]
""5] 3 [13]•-- - --------- [314 £231 15 14 4302 (5)
[7) (7] 23 ' 6686 (3] (15) 15 4 4782 (1]

17 12 6206 ([1 [231 23 ( 7038 [27] [9] 15 6 2526 (0)
[21) (21; 23 12 10110 (0] [u] 15 6 46606 [9)

17 16 8254 [9] [9] 23 14 937 4 [21] [21] 15 6 5022 (27)

5. 6 502 .. ..



74

the subset lw:kE 13,1 2 13 of.,". A low value of 0 max(w,z) = 13 is achieved

for many pairs in the subset W:k E7I ill 273 of .'. The AO/ASE phase shifts of

the sequences in subset f(n:kE7 13 ,) 2 12 and [w:kE1l 11 1,2 7j are reported in

Appendix E, Table 55. The peak correlation parameters and r(w,z) for the

subset (W:k Ejlla, 1 27a} are shown in Tables 56 and 57.

It should be not-I that for sequence length p 63, lower

periodic peak parameters can be achieved for the slightly smaller sets of

Kasami sequences (Section 5.5).

5.4.3. Sequence lengths p 127 and p = 255

For sequence length p= 127 it is not possible to specify values

of k in w Lt + T v such that 0 9 (u,v)), whenever uL and v are

a preferred pair of m-sequences. An ordering, however, 3f the values

k ET as a function of the cardinality La of the set (1:I: (A)l 0 (W)l
w max

can be found for the preferred polynomial pairs. Table 23 gives the results.

k
Let .be the set of Gold sequences k, u and w = + T v with

4 and v generated by the preferred polynomial pair (211,217). A good choice

for a set ot sequences in .2vith low values of La might be the subset

[w:k E 0,T7,ýT 31 supplemented of course with L and v. Table 58 in Appendix E

specifies the AO/LSE phase s~.ifts of the sequences in subset (w:k ElO,11 7,)13 1

as well as (w:k Eý35 . The latter merely for comparative reasons. For

the subset tW:kElo,0 7) supplemented with U and V, the peak correlation

parameters and r(w,z) are given in Appendix E, Tables 59 and 60. In

addition Table 61 provides the cardinality Lc of the set ft:lwz(2)I

emax (w,z)} for the sequences in above subset. In the case that z u or

z v, Lc = 28 for kET1 0 and Lc =27 for kE 7.

Table 24 gives results for non-preferred polynomial pairs.

•. .... . . Nz • . . .
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Table 23. Periodic autocorrelation functions for w = uT kv

with kEll (E[xl) and (u,v) a preferred pair; 9 max(w) = 17; p = 127.

u: 211 211 211 211 211 211 211 211 211
v: 217 277 325 301 235 253 203 357 247

La M(w) k k k k k k k k k

14 10430 [0) [0) [01 [0] [0] [0] [0) [0) (03
18 13374 [7] [43)
20 13502 [19] (29)
20 14398 [43] [1 [21) [13] [19) [29] [31)

[147) [31)
22 14526 [3] [9] [23) [9] [43) [7] [11]

(13] [43] [29] [13] [55]
22 15422 [13) [5] [27] [9] [5]

[15] [63)
24 15550 [19] [7] [31] [55] [19] [5) (5] [I] [13)

[29] [27] [15] [7] [31]
24 16446 [15] [3] [7) [7] [55) [47) [21)

[27] [23]

26 16574 [9] [3) [15) [9] [19] (19]
(9] [29] [63] [11]

-- [27] [23]

26 17470 [29] (27] (43] [21) [5]
26 13438 [I1 (13]
28 14462 [23] [63) [21) [9] [1] [47) [23) IS] £29)[11]

28 17598 [43] [63)
28 18494 (29] [3) [29) [15)
30 15486 (I] [5) [13] [13] [31] [21) [63] [7] "[27)

[55] [1] [23) [19) [15] (1] [21] [31]
[11i [55]

30 18622 [11] (3] [3]
32 16510 [11] [21) [55] [5) [63] [3] [15] [3] [1]

[21] [55] [7] [63] (23) [23) [19) [13] [3]
[31] [19] [43) [9]
[63] [47] [55] [47]

34 17534 [47) [31) [15) [11) [5) (1] [27) [27) [15)
-- --- [21]

[47]
36 18558 [47) [55] [43]
S----- [23) [47)

38 19582 [5) [63) [43) [11] [11] [7)
[31) [27)
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Table 24. Good a (w) ; w uTkv and (u,v) a

non-preferred pair; p 127.

u v e (uv) kEl (Cx)) e (w)
mxx max

211 367 41 [0], [3), [5), [7), [9],[113, 23

C[19],[21),[29],[31],[55),[63)

211 313 41 [47) 17

211 345 41 [31) 17

211 221 21 [01 19

211 361 41 [63) 17

211 271 41 [63) 17

211 375 41 [0), [i], [7),[19),[211,[231, 23
[27),[293,[31],[43),[47],[63]

Finally, Table 25 gives some results for sequences of length

p = 255 N- preferred polynomial paits exist for this length and good

periodic correlation properties for p = 255 can better be achieved with

the small sets of Kasami sequences (Section 5.5).

5.5. Kasami sequences

In the previous sections we investigated subsets of sequeuces

k n
W P + T v with P and u both m-sequences of period p 2 - 1 generated

by primitive polynomials of degree n.

2, Let n be even. In this section we consider a special class of

k
sequences again of the type w = + T u: p is an m-sequence of period

S= 2n
p - 1 generated by primitive polynomial fl(x) and v is a seqtuence of

period p' 2n/2 -1 generated by irreducible polynomial f (x) of degree
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k
Table 25. Good 0 (W) ; w u.Tkv; p 255.max

u v e (u,v) kETx([X]) 0[(W)
ma x ax

435 551 63 [1], (7],1131,[151,[21],[231,[25], 33
[27],[31],[37],[39],[45],[471,[51],

[53],[61],[87],[95],[111],[127]

435 747 65 [9],[27 ,[87] 33

435 545 47 [51,[C119] 31

435 543 63 (1), [9],[25],[27],[291,[31],1373, 31
[39],143],[61],[633,[871,[95]

-435 455 31 All 31

435 703 95 [3],[11],[373,[61],[631,[91] 33

"43r 607 63 117],[85][119] 17

435 561 31 All 31

435 765 31 All 31

1435 717 63 [3], [91,113],[19],[21],[29],[31], 31

"39],[53],[55],[953,[111],[127]

-435 651 47 [17],C51] 31

435 615 65 [391,[631,[87] 33

435 537 63 [5), [7], [9¾,1,[1519],[23],[25], 33
[27],(31],[37]i[39],[451,[47],(51],
£ 53] ,[591,[£63] ,[91] ,[111],[ 1272
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n/2 n/.2 sifn/2 whereby s 22 + . One can think of v as a concatination of 2n/2 + 1

.n/2m-euences v' of length p 2 -1. A shift register with fl(X)fs)

as characteristic polynomial will generate 2n/2 sequences of period p 2 - 1
"k ,n/2

(P and w + T v,2k - 1). Those sequences, and their

cyclic shifts, are referred to as Kasami sequences. Kasami (1966) specified

the distribution of the Hamming weight of those sequences. From this

weight distribution it follows that the periodic cross-correlation Pv(Q )

takes on the value 0 ('v) = 2 n/2 -I for 2 + 2n/2-I values of T and
u'v

S( 2n 1 n-i 2 n/2-l -I values of T, where r E [0, p-l].
u,v

Of course u'v (,r2) = ' uv(TI1 whenever T 2 T 1I mod p'. Hence,

we can determine 0 (T), T Ell by specifying 0uv() for rE I whereby

idenotes the cyclotfic coset of integers modulo p'.
!Again w ýL + Tkv and + T1), with P and v', and thus v, in

: their natural orientation. I-mmediately we have

0 (w) < ax(Wz) < 2n + 1 • (5.10)
max max

As in Section 5.2 it follows that

p if 1 0 mod p, m-k 0 mod p'

I pw ) .if 0 mod p, m-k 0 mod p'

w~ lif A Omod p,14in-k 0 mod p'

U (kes ( )-r ()), otherwise
u'v (5.11)

where functions s(ý) and r(A) are specified as in equation (5.4) and

p/p' 2 n/2 + 1. As a special case one obtains, with u w,
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r-p/p' if L 0 rod pauwL M (5.12)Se v(k+L-r(A)), otherwise .

Notice that lew,z(0)! = 2 n/2 + 1 0 (max(u,v) whenever m-k # 0 mod p'.

Therefore m (W,Z) < ma (u,v) Is impossible for any subset of pairs of

Kasami sequences, and our main attention will focus on the number of

times e (w,z) occurs for subsets of Kasami sequences.
max

5.5.1. Sequence length p 63

6Let fl(x) =x + x + 1 (103) generate m-sequence P of period
•=26 x3 2 23

p 26 -l 63. Then f (x) x + x + 1 (015) with s = 2+ I = 9 will

generate sequence v of period p' = 2 - I = 7. With the matrix X of
-U/

Table 7 one obtains 0 (L) 7 for lEj0Q and 3' while 9 (L) = - 9
u'v 03 u'v

for IETI'.

Case 1: m-k 0 mod p1

With the trinomial structure of m-sequence u and v' it is easy

to show that function k + s(0)-r(A) mod p' in (5.11) does take on values in

t for all k. Thus P (w) 0 (uv,) 9. However the cardinality

La of the set (A:10(I)! = 9 (w)) is a function of k and one finds
w max

22 if kEl'

La = (5.13)

24 if kE 10' 13 '

Case 2: m-k # 0 mod p'

Let

G'(x,y) ((x.2j mod p', y.2j mod p')), j 0,1, ... (5.14)
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denote a series of pairs (x,y). With the same method as used in Section

5.3 it is easy to show that for sequence pairs (w=p+Tkv,C P • + Tro)

the cardinality Lc equals

27 if (k,m) = G'(0,1), G t(1,3), G'(1,5), G'(1,6)

Lc -18 if (k,m) = G'(l,2) (5.15)

20 if (k,m) = G'(0,3), G' (3,5) •

Observe that G'(1,2,4) are triples for which La 22 and Lc = 18.

kIn the special case that m-sequence ýL is correlated with w = + T v one

finds Lc =28 for kETI0' and 1 3 ' while Lc = 27 for kE~l .

Table 26 specifies the AO/LSE phase shifts of above discussed

Kasami sequences. The peak correlation parameters and r(w,z) are given

in Tables 27 and 28 respectively.

5.5.2. Sequence length p = 255

The results for this sequence length are of particular interest

because no preferred pairs of polynomials can be selected thus no sets

of Gold sequences exist.

Let f 1 (x) x 8 + x4 + x3 + x2 + 1 (435) generate m-sequence 6

of period p 28 - I = 255. Then f s(x) - x4 + x + 1 (023) with

s = 24 + 1 17 will generate sequence v of period p' = 15. One obtains

8uv(() 15 for IE I' and •3 while 9 u,v () = - 17 for I E •O' T5 and

q7 "

As in 5.5.1. one has 0 (w) = (w,z) = 17 for all w and
max max

(w,C). For sequences w, one finds for cardinality La
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Table 26. AO/LSE sequences U and W z TY(u-Tkv); u:103, v:015; p 63.

0 (max(w) La M(w) k Loading y emax(w) La S(w) M(w)

9 24 3422 0 3733 60 13 4 1455 2398

1771 33 11 4 1395 2222
9 22 3358 2 4506 60 11 8 1331 1966

I4 0263 8 11 6 1427 2350

3 5261 6 13 2 1483 2510
9 24 3422 5 1043 55 11 4 1423 2270

6 6544 33 11 2 1247 1566

1 62 62 U 0206 1 11 2 427 1646

Table 27. Correlation values for the AO/LSE sequences U and

W = TY(uT kv); u:103, v:015; p = 63.

k 0 1 2 4 3 5 6 U

0 13 19 19 21 23 17 15 21
1 9 11 23 17 17 15 23 21
2 9 9 11 19 19 17 17 15
4 9 9 9 11 17 23 21 21
3 9 9 9 9 13 21 21 19
5 9 9 9 9 9 11 21 17
6 9 9 9 9 9 9 11 21
U 9 9 9 9 9 9 9 11

Table 28. Interference parameter r(w,z) for the AO/L.SE sequences U

kand W TY(u.T v); u:103, v:015; p 63.

ck 1 2 4 3 5 6 U

0 9570 7402 8106 7338 6846 7838 8962
1 6518 7982 7030 6842 8074 9022
2 6950 6614 6962 6242 6854
4 7742 6642 8770 8830
3 6002 6986 7638
5 7126 6674
6 8282
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F11 if kEll t q

La = (5.16)

112 if kE111
t f3 '

For the sequence pairs (w,C) one finds for cardinality Lc

2 ifG'(0,5), G'(0,7); G'(7,14), G'(7,13);
G't(5,7), G'(5,14), G'(5,13), G' (5,11).

'(1,2), G'(1,4); G'(3,6), G'(3,12);

• ; ~104 if (k,m) =I
14i '(1,3), G'(1,6), G'(1,12), G'(,9).

'Lc
Ic (5.17)

G'(0,1), G'(O,3); G'(1,5), G'(1,10);

G'(3,5), G'(3,10);

119 if (k,m)
119 f (km) = G'(1,7), G''1,14), G(I1,G',I;

G'(3,7), G'(3,14), G'(3,13), G'(3,11).

In the special case that m-sequence ýL is correlated with u one obtains

Lc =119 for kE and while Lc 120 for kEl1 I and I1'

Table 29 specifies the AO/LSE phase shifts of above discussed

sequences while Tables 30 and 31 report the resulting peak correlation

parameters and r(w,z). Observe from Table 30 that 8 17 and • 51
c C

for the set of AO/LSE Kasaml sequences of length p 255 generated by

polynomial pair (f (x),f (X)) (103,023). In contrast, 9c 95 and

= 81 for the set of AO/LSE m-sequences of length p 255 as reported
C

in Table 42!
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Table 29. AO/LSE sequences U and W TY(u.Tkv); u=435, v:023; p 255.

8 (w) La M(w) k Loading y ma(W) TA S(w) M(w)max max

17 110 60606 0 2357 98 31 2 27807 50622

[1 2326 239 31 41 27127 4177741
"2 3551 198 29 2 28227 52174

17 112 60734 4 7430 35 e3 I 29179 55982
5636 132 31 2 28603 53678

3 3710 21 29 6 26399 44862
6 5044 220 29 4 27903 50878

17 112 60734 12 0261 47 31 2 27211 48110
9 0617 162 31 2 29287 56414

17 110 60606 5 4666 89 31 4 29407 57022
10 0454 89 29 4 26543 45566

7 3134 198 31 2 27079 47710
14 2577 58 31 2 28755 54414

17 110 60606 13 3416 211 27 8 28387 52942
11 7577 147 31 2 27867 50862

1 254 254 U 4136 236 25 6 9199 36542

Table 30. Correlation values for the AO/LSE sequences U and

W TY(u.Tkv); u:435, v:023; p 255.

kc 0 1 2 4 8 3 6 12 9 5 10 7 14 13 11 U

0 31 51 43 41 41 37 51 47 39 45 45 43 45 45 41 51
1 17 31 51 45 43 49 41 41 39 49 39 43 41 43 4i 45
2 17 17 29 45 41 47 47 41 51 45 49 41 47 49 45 43
4 17 17 17 33 47 41 1 39 45 41 45 43 43 41 41 41
8 17 17 17 17 31 43 39 45 41 41 37 39 41 43 51 41
3 17 17 17 17 17 29 49 41 41 39 47 45 39 47 37 49
6 17 17 17 17 17 17 29 49 45 39 47 43 43 49 47 43

12 17 17 17 17 17 17 17 31 41 41 45 43 45 39 41 45
9 17 17 17 17 17 17 17 17 31 39 45 43 41 49 45 43
5 171717 1717 17 17 1717 31 39 49 49 49 41 3

10 17 1717 17 1 17 117 7 17 29 47 43 411 43 49
7 17 17 17 17 17 17 17 17 17 17 17 31 37 45 35 51

"14 17 17 17 17 17 17 17 17 17 17 17 17 31 45 43 41
13 17 17 17 17 17 17 17 17 17 17 17 1 17 27 39 43
11 17 17 17 17 17 17 17 17 17 17 17 17 17 17 31 39
U 17 17 17 17 17 17 17 17 17 17 117 17 17 17 25
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CHAPTER 6

CONCLUSIONS

The asymptotic behavior of the aperiodic correlation parameters of

random binary sequences has beai studied and an accurate approximation of the

average signal-to-noise ratio at the correlation receiver output was obtained.

This result is very useful for preliminary system design. Those m-sequences

that are best suited for synchronization as well as multiple-access were

reported. The relationship between the third central moments of the odd

correlation functions and the trinomial structure of m-sequences has been

studied. Actual data showed, however, that the third central moment is not

a very effective indication of good aperiodic correlation properties. A new

method based on Gauss' products of cyclotomic cosets was presented and applied

to obtain new subsets of sequences with better correlation properties.

The importance of the data presented in this thesis stems from its

use in the selection of sequences for SSX systems. This can be illustrated

by a particular example. Suppose that there are K-8 users for a SSXA system

and expression (2.29) indicates that for the system eb/No, the required

sequence length is p - 255. One should select the eight AO/LSE

m-scquences as given in Table 41 (p. 104) if the synchronization and anti-

multipath requirements necessitate this. If, however, the peak cross-

correlation parAeters are of primary concern one should select eight

AO/LSE Kasami sequences from Table 29 (p. 83) with k E ¶0,.7 and U.

In the latter table up to sixteen users can be accommodated.
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APPENDIX A

INTERFERENCE PARAMETER FOR BARKER SEQUENCES

In this Appendix we show that r(uv) 2(p +p-l) in any set

of Barker sequences of odd period p. For all known Barker sequences

of odd period p,

0 L odd

C (1) (A. 1)
u

(-even

Each such a sequence gives rise to three others under the transformations

(Turyn and Storer (1961))

•(-l) Juj(.a

i: (A.2b)
vj (-l) +uj (A.2b)

-u] (A.2c)

Substitution of (A.2a) or (A.2b) into (1.7) gives

C () -(-1) C (-I) YA

hence

C ()Cv(A+l) - Cv(-A)Cv(..-) , Vt.

u1,v U,v y

whici• ioplies

P-I

-. • (,)C (1+1) = 0 (A.3)

$ alp U' U 9 "

f.•'~
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Furthermore we have with (A.2c)

p- 1  p- 1

r Cuv (,)C uv(+1) E C (uC()Cu (1+) (A.4)
t l-p l-p

Substitution of (A.1) into (A.4) implies that (A.3) also holds for (A.2c)

hence, we conclude with (1.20) and (A.3) that for p odd

2r(u,v) = 2 ,v(t) . (A.5)

"It was pointed out in Pursley and Sarwate (1976) that the sum in (A.5)

equals p + p - 1 for Barker sequences.

C.
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APPENDIX B

BOUNDS ON IRE AP1e. ODIC CROSS--0PRELAION FUNCTION

The number of sequence pairs (u,v) for which C (C) - r, with
u1 Iv

0 , 1; p-I and Irl p-t, equals

h(tpr) - 2 (B.1)

To prove (2.4) we follow the procedure of Moon and Moser (1963). Let

f(p,G) denote the number of sequence pairs such that

C (u,v) - max ICu(t)I ( G G(p)

Each sequence pair will be counted p times if h(l,p,r) is simmed over all

L and r such tha t 0 : t f p-l,Irl : G. Therefore,

p,f (p,G) : 1: E ( 2 P " p+

or
p~f(p.G) •;(ZG+1)2p 0 (-0)

I (2G+I)2 2 p p + 2(p--).

Hence,
2p f(pG) s (2G+L)(p-3/2 + 2p 1 (;-1)i. (B.2)

The right hand side of (B.2) decreases to tero for p - i, if G(p) - p

whereby c > 0.
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Let f(p,f,,H) denote the number of sequence pairs such that

to,(•C ) Z H " H(p). Furthermore, let f(p,H) denote the number of pairs

such that
A

Cmax(u,v) 2 H - H(p).

Clearly,

f(p,•,H) - 2p 2L Z H(4(p;•+r))

P 2t 2 -p

where the sum is over those integers t such that It-k(p-A)l > kH.

Hence,

* ! f(p,I,H) : 2P.2p 2 expt- (4p)'H 23

or

P1 f(P2Lf) 2 2p expf- (4p)'H2

Hence,

.2 f2P "(p,H) a 2p expf- (4p) 1!H2 ). (B.3)

The right hand side of (B.2) decreases to zero for p -, c, if

1H(p) (2+e')(plogp) i,' > 0 or H(p) p i > 0. This concludes the

proof
:~22p

Conclusion: If u and v are drawn aL random from the set of all 2 pairs

then

{r flog Cm(usv)- }

where lim '(p) u 0.

p.. ...... . ,. ...... ,



101

APPENDIX C

CORRELATION PAXAMETERO OF aO/LSE M-SEQUENCES

*i Table 32. AO/LSE m-sequences of length p = 31.

* Poly. Loading* Poly. Loading* m (u) La S(u)max

045 11001 051 01001 7 2 107
067 00011 073 01101 7 2 123
075 11110 057 10010 7 2 91

Table 33. Correlation values for AO/LSE m-sequences; p = 31.

4 6 7 5 7 5• 5 7 5 1 3 7

Z045 7 11 15 15 15 19
067 9 7 15 15 19 15
075 9 9 7 19 15 15
051 11 9 9 7 11 15
073 9 11 9 9 7 15
057 9 9 11 9 9 7

Table 341. Interference parameter r(uv) for AO/LSE m-sequences; p ; 31.

045 067 075

045 2382 1l46 1990
067 2318 1910
075 2206

•:NZ
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Table 35. AO/LSE m-sequences of length p 63.

Foly. Loading# Poly. Loading* (U) La Sk(u)

103 00C010 141 011111 11 2 127
133 110001 155 011001 11 2 503
147 100011 163 110101 11 2 1135

Table 36. Correlation values for AO/LSE m-sequences; p = 63.

•{1 1 1 1 1 1
" 0 3 4 4 5 6

! 3 3 7 1 5 3

103 11 21 17 21 19 19
133 17 11 19 19 31 25
147 171 23 11 19 25 23
141 15 23 23 11 21 17
155 23 15 17 )7 11 19
163 23 17 15 17 23 11

Table 37. Interference parameter r(u,v) for AO/LSE m-sequenoes; p 63.

103 133 147

103 9574 7954 6958
133 10006 8138
147 9414
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Table 38. AO/LSE m-sequences of length p 127.

Poly. Loading* Poly. Loading* 8 (u) La S(u)
max

211 0010000 221 1001101 17 6 2183
217 0000101 361 1111111 15 12 2015
235 0001100 271 1000101 17 10 2283
247 0010111 345 0110001 17 8 2255
277 1110001 375 0101010 19 4 2295
357 1110010 367 0110101 17 4 2563
323 1110111 313 1000111 17 4 2203
203 1101101 301 0010010 17 4 2087
325 0000101 253 1101100 19 6 2483

Table 39. Correlation values for AO/LSE m-sequences; p - 127.

, 2 2 2 2 2 3 3 2 3 2 3 2 3 3 3 3 3 2
i!;•, 1 3 47 5 2 0 2 2 6 7 47 6 1 0 5

• 1 7 5 7 7 7 3 3 5 1 1 1 5 5 7 3 1 3

S211 17 33 31 27 27 31 39 27 25 37 45 3.5 47 33 35 29 37 .27
1" 17 17 15 31 31 27 29 31 37 31 45 35 23 37 33 29 29 31 29
235 17 17 17 27 31 29 2 9 35 29 33 23 37 29 33 27 31 33 31
247 17 17 133 17 31 29 33 29 33 47 37 29 35 33 29 29 23 53

277 17 17 17 17 19 27 33 33 39 33 33 33 33 37 31 29 29 35
357 17 17 17 17 17 17 31 39 27 35 29 27 29 31 41 31 31 35
323 17 17 41 Yr 17 17 17 41 41 29 29 31 29 29 31 37 27 27
203 17 17 41 17 17 41 17 17 37 37 31 33 23 29 31 27 37 25
325 17 17 17 17 41 17 41 41 19 27 29 31 53 35 35 27 25 37
221 21 41 41 41 41 41 41 17 17 17 33 31 27 27 31 39 27 25
361 41 21 1' 41 41 41 41 41 17 17 15 31 31 27 29 31 37 31
271 41 17 21 41 17 41 17 17 41 17 17 17 27 31 29 29 35 29
345 41 41 41 21 41 41 17 17 41 17 17 17 17 31 29 33 29 33
375 41 41 17 41 21 1( 41 41 17 17 17 17 19 27 33 33 39
367 ', 41 41 41 17 21 17 17 41 17 717 i7 1' 17 3i 39 27
313 4114117 1,1 41 172 71 17 41 17 17 17 17 41 41
301 17 41 17 17 41 17 41 21 i7 17 17 41 17 17 41 17 17 37
?53 17 17 41 41 17 41 17 17 21 17 17 17 17 41 17 41 41 19

Table 40. Interfereno( parameter r(u,v) for AO/LSE m-se:4uenoes; p 127.

21" .17 235 247 277 357 323 203 325

211 41214 33622 32722 3Z022 29070 34394 32978 31486 30250
217 40222 30954 31406 31446 29 55)1 3e666 34118 32066
235 420J4 32570 33714 32974 32246 33106 33310
247 40326 3'1054 32002 29546 30486 33634
277 41294 31146 31938 33934 34202
357 41958 31258 30806 30770
323 39870 33538 33598
203 39902 32442
325 42894
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Table 41. AO/LSE m-sequences of length p 255.

[Poly. Loading' Poly. Loading* (u) L~a S(u)

4.55 01101111 551 00000111 27 2 9607
.453 01000010 651 00011110 27 2 10927
1435 10000101 561 11111110 25 6 9199
537 10110100 765 00111100 25 8 8883
545 01001100 515 11011001 27 4 9555
543 10110001 615 01100010 27 2 9875
607 00100111 703 00111101 27 4 9323
717 00111110 747 10000100 27 2 10211

Table 42. Correlation values for AO/LSE m-sequences; p 255.

4 4 4 5 5 5 6 7 5 6 5 7 5 6 7 7
5 5 3 3 4 4 0 1 5 5 6 6 1 1 0 4
5 35 7 5 3 7 7 1 1 1 555 37

1455 27 51 51 7 43 61 49 45 61 71 61 55 43 77 61 63
453 65 27 53 53 81 51 51 55 71 55 51 49 57 57 51 145
435 31 63 25 41 43 53 47 59 61 51 57 45 53 49 61 51
537 63 31 63 25 47 45 49 73 55 49 15 53 47 41 41 61
545 31 95 47 65 27 61 45 57 43 57 53 47 53 43 13 51
5 643 63 63636363 27 149 49 77 57•49 41 43 55 51 51
607 63 63 63 65•47 31 27 47 61 51 61 41 43 51 53 53
717 47 65 63 95 31•47 31 27 63 45 51 61 51 51 53 63
551 31 63 63 47 63 95 65 63 27 51 51 47 43 61 49 45
651 63 31 147 63 63 31 47 63 65 27 53 53 81 51 51 55
561 63 47 31 31 63 65 95 65 31 63 25 41 43 53 47 59
765 47 63 31 31 63 47 63 63 63 31 63 25 47 45 49 73
515 63 63 63 63 31 65 63 63 31 95 47 65 27 61 45 57
615 95 31 65 47 65 31 63 63 63 63 63 63 63 27•49 49
703 65 47 95 63 63 63 31 63 63 63 63 65 47 31 27 47
747 63 63 65 63 63 63 63 31 47 65 63 95 31 47 3127

Table 43. Interference parameter r(u,v) for AOILSE m-sequences; p 255.

455 453 435 537 545 543 607 717

1455 168870 126358 126230 129578 125194 129690 135586 1325514
453 171990 131678 134322 133650 134914 127178 129010
435 166870 131314 133010 136034 122954 126130
537 167422 129702 126166 131454 131430

545 165462 137750 120510 1311462
543 167638 129198 136278
607 166438 133950
717 168998
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APPENDIX D

MOMENTS OF APERIODIC CORRELATION FUNCTIONS OF M-SEQUENCES

I i In this Appendix, various moments of the aperiodic cross-

correlation and autocorrelation fv,•tions are calculated. Let u - TXU

y
and • a T v, where u and v are m-sequences in their characteristic form.

Assume that x and y are independent random variables both uniformly

distributed over the integers in the range (0, p-l]. With the aperiodic

cross-correlation for m-sequences Z and • defined as in (1.7), the higher

moments of C- -M() can be calculated in a straightforward manner. Similarly,u'v

the moments of C_(A), A 0 0 can be obtained. The Latter are identical to

Lindholm's (1968) moments of M-tuples when the substitution p - I'd -M is

used.

D.I. First moments of the aperiodic correlation functions

The conditional expectation of Ca,-(A) given 1-p 5 t < 0, equals

p-l+A
EzC,- - (1)/I-p < I < 0 E - Er u-v~ -A+x vj+y}

J-O x-O Y J+y)

-2* p (p +A) (D.l)

p-1
which follows from the property that E u - .1 for any m-sequence u.

Similarly it follows that

[}

-- -.--. . - . - -t.
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E 0; ,(1)/0 < A < p-il. p 2 (p.t), (D.2)

Hence, from (D.1) and (D.2), for all A

E•CU (A)] . p-2 (p 1 ,Il) • (D.3)

For the conditional expectation of C-(A), given 1-p < I < 0, we
U

have
p-l+L -1 p-i

* E{%(A i-p < 0) E p . u
~ J-A+x J+XcJ0 x-O

From the shift- and-muitiply property of m-sequences (see Section 3.2)
whereby Uir+ - uj. U1 +, Vx, for some r and A 0 0, one obtains simply

pp-!+ -I p-i -i

Eu(A/ll-p<:S A <o0) p E Uj-r+x--p (p+A)
SJ-0 x-O

Therefore, for all A # 0

E(C-,)) p (111 - p) • (D.4)

D.2. Second moments of the aperiodic correlation functions

The conditional expectation of C2- ,(A), )gven I-p-< £ < 0
upv

p-l+A

E (C•2 ,(A)/l-p g A < 0)- E( E (ui.+ V1 ) 2] +

-p2+1 p-+( p-l p i 1

nJ=0 m-j+i KO y-0 j+y .
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Again from the shift-and-multiply property of rn-sequences

2 p-2-iA p-i-iA

=~ (+)1p- (p+A-1)J

Hence, for all- A,

Et (ii)M) (i- II)fl+p 2 (p-111 -1)] *(D.5)

2
For the conditional expectation of CZ.(A), given 1-p :j A < 0,

U

we have

EtC(A)l-<L<1.pL+ p-2- p-i-iA p-l

E(C-(A/lE A E1p++ E U u u u

With 1, 0 and some r #0 and s #0, on can write

uu u u i~u x.
j-z+x J-ix um-t-l- rnix ur-x us+x

Then, ur- u ~ Vx, for some t because r 0 S. Therefore

p-2+1- p-1-s1
E<-(1/- A < 0) +L2 (-1)

-(p +A)1- (p-sA+ )

Hence, for all A , 0,

U1(

E iiZ) (_t~l~ A ) D6

- . ., ~. -- - ~. -
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L. D.3. Expectation of the interference parameter r(u~v)

Consider the product of C-. -(I) and C-. -(+1).

E C.. (A) cu- .-(L+ 1)/i-p <s I < -13

P-2 U p44pI.pI

-P ~ E E u uV

~~~~- p-1~ -~ D4A nt n.\1y
jU0 J-0 m-0 X-0O~ y-O

jom, JOin-t

Hence,

-2
EtC..-(A) C.- .. (t+ l)/l-p :S A < -13 t.~ C+ 1) r- -'Q +1 -4)

For all A one finds

ý(p -1A- )p (-p -1A-2) 0<.L<p - I

E(C -() -2 (D. 7)
(P L p (-P +A1) l-p<A<- 1

Substitution of (D.5) and (D.7) in the expression of the interference

parameter r(u,v) defined in (1.20) gives

Etr~u-.Z)) pEI ( 2E3'ý( + EtC... .. (I) C.. -a(£4. )1)

2 2 1 -22 2(p +1 p- + (3p) ) + 2 E I p (I - p - )

Hience,
2 +p-1

Etr(7u,v)) 2(p -1+p).(D.8)
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"Also of interest is the product of C-. -(A) and C. -(A -p) Aereby
0 < I<,-1So <Q <_p-l.

Et ... (•1(-p) C9(1)/o < I P43

p E,- E~ E4 (P +x u ) (P E
iJ=0 m=O zaJO i'$Ly)

because, indeed j 1 £+m whenever 0 < j < -1 and 0 < m < p-1-1.

Therefore, with %u,•(-p) 0. O

.- 2
:.E(C-,•(M - p) C-,.(A)/0 < A < p- p p-21(p.) (D.9)

In a similar manner, it follows that

Z[•(C.)-p) C-(I)I0 < A < p-11 P Ip(-Z•p) .(D.10)
U u

D.4. Third moments of the aperiodic correlation functions

Of most interest is the third moment of C- -(.).
ul;

U'V

p-l+) p-l+.
= r (ui JLvi + 3(p+ A) E( E

j 0J0

p-1+1 p- 3+1 p-2+1 p-1+1
-3E( t U )+ 3!E( £: E J1 1nio 0

-O 1 i j-O m-j+l nmuml m Vm U

p 2 (p+A)) 3 (p+.) -2] +

-.I,
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-2 p-3+A p-2+AL p-l+A p-I.
+* 6p E [L MJ+ -~

J-0 maj+1 n-m*l X-0 J~

p-3+A p-2+1, p-1+1 p-i
E E E E v Vv
ju'0 m-j~ n-r~4 ~ J+y nm*y fl+y

Let i-p < I < 0. Whenever there exist a th~ree-tuple (J,m,n) such that

uJ£.1+ u M-A% +x Yn~& X (D.11)

and
0 < j < mn < n < p-i + A (D.12)

P-1
the sum E u UmAf u u-+ -+ p. Whenever such a three-tuple does

not exists, i.e., Uj..£., U m- A+xc u n- ~ !s-%nie' h , the sum

P-i
u Umj+ un~+ -1-. Of the (+ possible three-tuples (J,m,n)

for which (D.12) holds, there are B 3(p +J,) three-tupl otwih Dl)

holds for rn-sequence u. Hence,

E(C''ýM l-p I. < 0) -2 p 3(p+A) -23 (p+A) +

+

For all IL one obtains

E (3 (p 1A1) +6(;II) -

-2 3u(.3



-7 - 'Iv X. -

111

A similar procedure for the autocorrelation function gives,

for 1 # 0,
EtC(1)) p-1(1l1 -p) 3 +6p'1 (p+1)Bu(p- I1I) (D.1)

as previously dLrived by Lindholm (1968).

D.5. Expectation of a product of aperiodic correlation functions

Finally we derive the expect,'cion of the product of _2U -p)

and C., -().
U'v

2 -l 2 p-l-+

Etc. -(I-p) C-. (A/ < z < P-11 E( E +
U-V UV J 1O n JO n -s

1 .2 1-i P-1 P-l A-2 A- , P-I p-i
+2p"2 7 1u u/ u v

j-0 mxj+l nal xO j-14xum-Aft n-L+i J=O mJ+l nk i y -O m+y n+y

tez 0 < A < p-1. Whenever there exists a taree-tuple (J,mn) such that

and

0O5 j < m S n- ; P-1 (D.16',

p-1
the sum E uj.+x + un L+x U p. In the other cases this sum equale

x -Z jx 
n

-1. Of the 2 (P-1) possible three-tiple (j,m,n) for which (D.16) holds,

there are C3(A) three-tuples for which (D.15) holds.

With C-,-(-p) 0 0, one obtains

EIC2 ,(L-p) Ca, (,)/O<_I, <p-li -p 2(p-L) +
UV;)•.

+2P 2 ()(p-.&)+ (p + 1)Cu (1)H- ~-t) + (p + 1) Cv(A)I (D).17ý
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A similar procedure for the auto-correlation gives

_)Cij(A-)/ < Iu• < p ut = A( 0<•< -.

Hence, the left-hand side of (D, 18) can be written as

EtC (j-p) %(L)/0 < _p p-1. - 4- (t-p)10 < A < p-l) -EfCu(L-p)/0c< _p-l).

Substituting (D.14) and (D.6) results in

u u

DA co.parison between (D.18) and (D.19' 8ives

Indeed, this relationship can be obtained frs the coditioos (D.ll), (D.12)

and (D.16) +mediately, as follows. Again 0 < A S p-i. IheneVer (D.A1)

u

holds for B3(L) three-tupl~s, i.e., w'hereby 0 < j <~ ( n < A-I, th

will be 3BU(A) three-tu~3es (Jr,u~) such that (D.15) holds whereby

fl < j <r < A -I. 0 < n <_ A-I. liotice that there are (•) possible choices

for the pair (je ) suci that 0 _ j <a <_ -I and thus one cobcludes with

b:ondtion (D.14) tan (D.20) rust hold.

1[,1

- P {J)o<I -) P P11 6(+)uA, (.9
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D.7. Fourth moments of the aperiodic correlation functions

Equally straightforward as the derivations of the third moment

"of C- -M() in Section D.4, it is not diffioult to show that

tu[i sEfc~;(L)) - (p-ILI[){3(p- Izl) -24+2p' 2[3(p-Ihl -4](p- -I~l-1z])

+2 4p 2 (p -L,)2 -24 ' 2 (p+l)(p / + ) (P
24 () 24P(p- + 1) + B4('•)

where 1•(p - I•,l) denotes the num~ber of four-tuples ( ,m~nt) suck' that

u. u u u
j- mxn-x t-

a 0 ( <j <m+< 1 B<t < p-- 4Bl -

"4 4
eotice that the underlined part of E fCr(-)t equals the fourth moment of

Cuu(l) for random binary sequences (see Chapter 2).

The fourth moment of C-(L), •- 0, is given by 4Lndholm (1968).

k.U
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APPENDIX E

CORRELATION PARAMETERS OF SUMS OF PAIRS OF M-SEQUENCES

Table 44. AO/LSE sequences W TY(uT v); u:045, v:075; p 31.

e (w) La M(w) k Loading y e (w) La S(w) M(w)
max max

7 10 510 0 7150 20 5 8 203 302

5' 31446 41 9 2 323 526
10 1764 8 7 6 339 590

"9 2 766 20 4377 15 7 2 271 318
9 7017 28 7 2 291 398

18 3354 10 7 10 355 654

11 3007 30 5 8 291 334
22 7112 23 7 2 303 382

9 4 830 13 3125 8 7 6 319 446
26 1602 16 5 12 311 414
21 0750 1 7 6 379 686

15 2776 27 7 2 267 270
30 3440 9 7 2 291 366

9 6 798 29 6651 16 7 2 283 334
27 7046 7 7 4 319 478
"23 4503 3 7 6 355 622

7 4552 22 7 4 399 510
"14 4421 26 7 2 375 414

9 6 1086 28 5151 13 7 2 379 1130
25a 2221 10 5 10 359 350

b 1110 9
19 4060 22 7 1 399 510

1 3631 19 9 2 363 398
2 6741 28 5 6 331 270

9 8 1054 4 3043 14 5 8 335 286
8 1262 6 9 2 4119 622

16 0655 2 9 4 479 862

3 5272 10 7 10 475 590
6 1646 30 7 6 471 574

9 10 1310 12 7072 17 7 4 4-39 446
241 7613 4 7 2 423 382
17 7002 111 7 11 1139 4416
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Table 45. AO/LSE sequences W -Y(u'Tkv); u:045: v:067; p 31.

0 (w) La M(w) k Loading y 8 (w) La S(w) M(w)
max max

7 10 510 0 1723 13 7 2 235 430

P

7 6522 26 7 2 323 526
14 5730 2 7 2 275 334

2 766 28 5333 2 7 2 283 366
125 3427 17 7 2 307 462

19 1347 12 5 10 279 35G

11 4427 6 7 2 291 334
22 3053 241 5 12 311 411

i 9 830 13 1021 22 7 2 291 334
26 3044 26 7 2 323 1462
21 4103 3 7 2 295 350

1 5354 9 7 2 319 478
2 4641 30 5 10 287 350

9 6 798 4 4440 7 5 2 247 190
8 7553 9 7 2 295 382

16 6774 15 7 4 311 446

5 2102 15 7 2 355 334
10 4014 1 7 4 427 622

9 6 1086 20 1071 25 7 2 355 334
9 /D0336 26 9 2 1111 558

18 5214 6 7 2 367 382

3 3202 7 7 2 327 254
6 7321 11 7 4 391 510

9 8 1054 12 6634 23 9 2 1115 606
24 3212 11 7 4 391 510
I"le 636? 0 9 2 415 606

b 160; 20

15 4741 10 o7 6 455 510

I 30 3235 19 7 2 419 366
S9 10 %310 29 4417 12 T 2 435 430

27 2;2,4 26 7 2 447 #78
23 5451 5 7 2 451 494

I5
.-
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Table 46. AO/LSE sequences W - TY(u•Tkv); u:067, v:075; p 31.

r e (w) La M(w) k Loading y emax (w) La S(w) M(w)

S7 10 510 0 6537 14 7 4 263 542

7 5773 5 7 6 351 638
14 5624 1 5 4 243 206

9 2 766 28 3551 15 5 8 275 334
25 3530 13 7 2 279 350
19 4376 14 5 6 251 238

3 1401 12 5 10 295 350
6 5224 21 7 6 335 510

9.4 830 12 4621 8 7 2 299 366
24 5424 7 9 2 375 670
17 1014 5 9 2 315 430

11 3676 27 7 2 275 ""
22 0227 18 7 2 315 -,o2

9 6 798 13 6271 12 7 8 343 574
f 26 4317 27 9 2 303 414

21 7615 30 5 8 271 286

1 7000 6 7 2 351 318
2 0200 23 7 4 395 494

9.6 1086 4 1201 30 7 4 367 382
8 5773 5 7 6 351 318

16 6056 3 7 2 379 430

5 3602 18 7 2 367 414
10 6552 8 7 4 375 446

9 8 1054 20 4025 5 5 8 335 286
9 N024 12 5 8 347 334

18 6052 25 7 4 359 382

15 7057 9 7 2 407 318
30 2312 26 7 4 455 510

9 10 1310 29 3140 17 5 6 395 270
27 3225 11 7 4 459 526
23 4334 5 9 2 467 558

...........
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Table 47. Correlation values for the AO/LSE sequences U, V and

W TY Tkv); u:045, v:075; kE% n l 1

k 0 5 10 20 9 18 U V

0 5 17 15 11 11 11 11 13
5 9 9 15 11 11 13 13 15

10 9 7 7 13 11 17 15 11
20 9 9 7 7 13 11 13 13
9 9 9 9 7 7 11 11 15

18 9 7 9 9 7 7 13 13
U 9 9 9 9 9 9 7 15
V 99 99 9 99 7

Table 48. Interference parameter~ r(w,z) for the AO/I.SE sequences U, V and

W T TY .Tv); u:045,. v:075; k Efl and 1fl ;P 31.

Wk 5 10 20 9 18 U V

0 2006 1942 2050 1846 1830 1742 1702
5 1854 2578 2470 1918 2190 2142

10 1898 2406 1830 1846 1790
20 2106 2146 2090 1858
9 1582 2206 2054

18 1678 1526
U 1990

1S,
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Table 51. Correlation values for the fl/LSE sequences W = TY'u.Tkv);

u:103, v:147; kEjO, I and 127 p 63.

k 0 11 22 44 25 50 37 27 54 45

0 13 27 23 21 21 27 19 17 19 21
11 15 11 21 17 19 25 19 19 17 19
22 15 17 13 23 17 21 19 23 19 17
44 15 15 17 13 17 23 19 25 23 19
25 15 15 15 17 13 19 21 23 23 17
50 15 15 15 15 17 11 21 19 19 19
37 15 17 15 15 15 17 11 23 23 19

. 27 17 15 17 15 15 17 15 9 17 17
54 17 15 15 17 15 15 17 15 11 19
45 17 17 15 15 17 15 15 15 15 11

Table 52. Interference parameter r(w,z) for the AO/LSE sequences

W TY(u'Tkv); u:103, v:147; k E10 , i1 1 and 1f27 ; p = 63.

k 11 22 44 25 50 37 27 54 45

0 8602 8122 9470 8314 8270 8098 8830 9194 9814
11 9142 8794 9022 8498 9278 8258 7798 9442
22 10098 8662 8762 8446 8474 7798 8234
44 10690 9014 8538 8902 9370 9110
25 10506 8814 9714 9214 10850
50 9890 9798 7914 8366
37 8506 8830 7882
27 7746 7974
54 8874

1..--.-
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Table 53. Correlation values for the AO/LSE sequences W TY(u.Tkv);

"u:103, v:147; kE1, 121 and Tj9, k#18; p = 63.

. I k 3 6 12 24 48 33 21 42 9 36

3 13 25 19 19 15 21 21 19 23 17
"6 17 15 17 17 19 17 19 17 23 19

12 17 17 15 19 19 21 17 17 21 21
24 17 17 17 15 19 21 23 19 19 19
48 171717171323 23 19 29 15

33 17 17 17 17 17 11 23 29 21 19
21 17 17 17 17 17 17 13 17 19 19
42 17 17 17 17 17 17 17 15 21 21
9 17 17 17 17 17 17 17 17 13 15

36 17 17 17 17 17 17 17 17 17 15

Table 54. Interference parameter r(w,z) for the AO/LSE sequences

W = TY(uT kv); u:103, v:147; k El 3, 1]21 and I19, k#18; p 63.

-/
k 6 12 24 48 33 21 42 9 36

3 10886 6602 7870 6358 8358 6922 7186 11286 6342
6 8162 6958 8606 7022 7562 6266 7462 6798

12 7298 5738 7410 6582 4534 7578 7034
24 8526 7926 7242 6050 10526 5998
48 7598 7530 5114 6894 7614
33 6554 6266 7742 8646
21 7214 6482 5490
42 5474 6346

9 5638
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i I Table 55. AO/LSE sequences W =TY(u.Tv); u:103, v:141;

kT21' 1f13' T1,1' and '127; 3

Am (w) La M(w) k Loading y Iwx (W) fA s(W) M(u)

13 6 3182 21a 2223 41 13 2 1339 2174
b 6053 2

42a 6463 57 11 2 1207 1646
b 1103 28

B 13a 3745 41 11 4 12417 1486
b 0564 10

26a 7514 29 13 2 1339 1854
b 3520 9

52a 3262 48 13 2 1375 1998
b 7110 27

13 6 3502 41a 5341 59 13 2 1431 2222
b 7313 27

19a 4571 37 13 2 1475 2398
b 0545 8

38a 0367 56 11 2 1283 1630
b 7172 33

11a 5062 44 13 2 1551 2462
b 5615 9

22a 3320 0 11 6 1635 2798
b 0430 42

44a 4026 58 11 2 1311 1502
b 1127 25

15 2 3742 25a 4203 37 13 2 1463 2110
b 1575 2

50a 7246 56 11 2 1327 1566
b 2103 21

37a 4326 57 13 2 1467 2126
b 0721 33

27a 0431 62 13 2 1775 2078
b 4507 38

15 6 5022 54a 1601 56 13 4 1863 2430
b 1445 17

45a 3412 54 11 8 1843 2350
b 6022 28

II
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UTable 56. Correlation values for the AO/LSE sequences W TY(u.Tkv);

u:103, v: ; la 27a ; P 63.

Sk 11 22 44 25 50 37 27 54 45

11 13 23 21 15 23 ý7 21 21 19
22 15 11 19 21 19 23 27 17 21

L 44 13 15 11 17 23 21 21 23 19
25 15 13 15 13 23 19 15 17 29

"1 50 13 15 13 15 11 23 19 21 21
L, 37 15 13 15 13 15 13 21 25 19

27 13 13 15 13 13 15 13 19 17
54 15 13 13 15 13 13 15 13 17
45 13 15 13 13 15 13 15 15 11

Table 57. Interference parameter r(w,z) for the AO/LSE sequences

W TY(u.Tkv); u:103, v:141; kEqflla, ]27a ; p = 63.1.
k 22 44 25 50 37 27 54 45

11 8154 6366 5638 6014 7650 6110 9190 5962
22 8730 7538 7650 6590 7322 7034 8022
44 8366 6150 6738 9230 7694 6666
25 7734 6858 6766 9254 6658
50 7970 6406 6966 7946
37 7570 8122 6934
27 8550 6866
54 7946

[1
iIi
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Table 58. AO/LSE sequences W z TY(u.T v); u:211, v:217;

k EJo,17 , 13 and ¶1; p 127.

w (W) La 1(w) k Loading y emax(W) La S(w) M(w)

17 14 10430 0 03121 103 21 2 5447 11358

7 32357 78 19 2 5563 8878
14 36341 29 19 2 5463 8478
28 66225 11 19 2 5571 8910

17 18 13374 56 73375 103 19 2 5651 9230
112 13367 85 21 4 6535 12766
97 07553 109 19 6 6307 118541
67 33553 32 13 8 41815 5886

3 54364 55 17 6 5839 8830
"6 20430 60 17 8 5863 8926

12 60012 46 19 2 6291 10638
17 22 14526 24 25226 47 19 4 6235 10414

48 04210 75 19 2 5695 8254
96a 51060 55 21 2 6407 11102

b 24430 54
65 11654 108 19 4 6739 12430

5 60763 12 19 2 7527 10526
10 12732 34 21 2 7775 11518
20 10774 98 21 4 8327 13726

17 38 19582 40 57743 100 17 8 6987 8366
80 73550 83 19 2 7747 11406
33 73731 33 19 4 7823 11710
66 61143 29 19 4 7279 9534

I
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"Table 59. Correlation values for the AO/LSE sequences U, V and

W TY(u.Tkv); u:211, v:217; k l0 and T7 ; p 127.

"k 0 7 114 28 56 112 97 67 U V

0 21 27 27 31 31 43 35 31 31 41
7 17 19 27 35 27 31 29 29 35 41

114 17 17 19 31 37 31 33 31 31 37
28 17 17 17 19 31 27 25 31 31 31
56 17 17 17 17 19 27 35 25 29 23

112 17 17 17 17 17 21 27 29 27 33
97 17 17 17 17 17 17 19 31 37 39
"67 17 17 17 17 17 17 17 13 29 29U 17 17 17 17 17 17 17 17 17 33

V 17 17 17 17 17 17 17 17 17 15

Table 60. Interference parameter r(w,z) for the AO/LSE sequences U, V an

kW TY(u-T V); u:211, v:217; k E 0 and TI7 ; p 127.

7 14 28 56 112 97 67 U V

0 31746 31078 30090 29106 33878 34338 30942 31350 28798
7 32474 30750 30030 32082 3?9U2 31626 33034 32042
14 35018 30586 34670 34978 34998 32158 34166

28 29022 31866 32542 31026 32394 33522
56 31258 30654• 9946 30482 28882

112 31450 33206 32982 32918
97 34262 33226 35002
67 31670 31886
U 33622

Table 61. Cardinality Lc for (k,m) of sequence pairs

(w u uTkv, z u-Tv); u:211, v:217 ; p 127.

(k,m) Le

G( 0, 7) 37
G( 7,14) 20
G( 7,28) 18
G( 7,56) 19
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